Tensor correlation in He isotopes

T. Myo¹, K. Katō³ and K. Ikeda²

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan ²Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan ³The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan.

The tensor force is an important component in nuclear force and plays an important role in the nuclear structure, such as the saturation property and clustering phenomena. In ⁴He, the contribution of the tensor force in the energy is comparable to the central one.

In this study, we investigate the role of tensor force in the He isotopes including a halo nucleus ⁶He[1]. In most calculations of halo nuclei, an inert core +n(+n) model is often used, such as the $(0s)^4$ description of ⁴He core in ⁶He. But, this model cannot incorporate the tensor force and the physical aspects of tensor correlations have not been realized yet in He isotopes.

We examine what kind of correlation tensor force (tensor correlation) produces. The tensor force tends to change the parity of the nucleon single particle orbit due to the operator of $(\boldsymbol{\sigma} \cdot \boldsymbol{r})$. This is originated from the pion (pseudoscalar meson) because tensor force mostly comes from the one-pion-exchange potential[2, 3, 4]. Then, in ⁴He, we consider that the 0s and 0p orbits can be coupled by tensor force and the description of ⁴He is extended to $(0s)^4 + (0s)^2(0p)^2$. We first show the effect of tensor correlation in ⁴He, where we use the harmonic oscillator wave function and take the length parameter of the 0s and 0p orbits (b(0p) and b(0p)) freely and determine them variationally. For effective NN force, we use Akaishi force[5, 6] constructed from the G-matrix theory using AV8' force, and consists of the central, tensor, and LS parts. We furthermore tune the central part to fit the binding energy (28.3 MeV) and matter radius (1.48 fm) of ⁴He. In Table 1, we show the results of ⁴He, in which the 0p orbit is narrow to represent the higher shell component from the tensor force, and the probability (P) of the $(0s_{1/2})^2(0p_{1/2})^2$ component is large via 0⁻ coupling of the $0s_{1/2}$ and $0p_{1/2}$ orbits. This reflects the pion nature [1, 4, 5].

Next we analyze the *p*-wave resonances of ⁵He by solving the coupled channel problem of ⁴He+n. Due to the large mixing of $0p_{1/2}$ component from the tensor correlation in ⁴He, the Pauli blocking mainly occurs in the $1/2^-$ state in ⁵He and the splitting of $1/2^--3/2^-$ can arise. To show this, a single Gaussian potential is used for ⁴He-n without LS part. The results of phase shifts are shown in Fig.1 in which the tensor correlation produces the half amount of the observed splitting, which is consistent with other studies[7, 8].

We also show the preliminary spectrum of ⁶He with three-body calculation in Fig. 1. It is found that the 0_2^+ states is strongly affected by the tensor correlation in which two valence neutrons occupy the $0p_{1/2}$ orbit and suppress the tensor correlation in ⁴He core due to the Pauli-blocking.

References

Figure 1: Results of ⁵He and ⁶He.

- [1] T. Myo, K. Katō and K. Ikeda, to be published in Prog. Theor. Phys., [arXiv:nucl-th/0411086].
- [2] H. Toki, S. Sugimoto, K. Ikeda, Prog. Theor. Phys. 108,903(2002).
- [3] Y. Ogawa, H. Toki, S. Tamenaga, H. Shen, A. Hosaka, S. Sugimoto and K. Ikeda, Prog. Theor. Phys.111,75(2004).
- [4] S. Sugimoto, K. Ikeda, H. Toki, Nucl. Phys. A740,77(2004).
- [5] Y. Akaishi, Nucl. Phys. A738,80(2004).
- [6] K. Ikeda, S. Sugimoto, and H. Toki, Nucl. Phys. A73873,2004.
- [7] S. Nagata *et al.*, Prog. Theor. Phys. 22,87(1959).
- [8] T. Terasawa, Prog. Theor. Phys. 22,150(1959); *ibid.* 23,87(1960). A. Arima and T. Terasawa, Prog. Theor. Phys. 23,115(1960).
- [9] T. Myo, S. Aoyama, K. Katō and K. Ikeda, Phys. Rev. C63,054313(2001).