Pseud critical temperature in $N_f = 2$ full QCD

Y. Nakamura¹, V.G. Bornyakov², M.N. Chernodub³, Y. Mori¹, S.M. Morozov³, M.I. Polikarpov³,

G. Schierholz⁴, A.A. Slavnov⁵, H. Stüben⁶, and T. Suzuki¹

¹Kanazawa University, Kanazawa 920-1192, Japan

²Institute for High Energy Physics, RU-142284 Protvino, Russia

³ITEP. B.Cheremushkinskaya 25, RU-117259 Moscow, Russia

⁴NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen, Germany

⁵Steklov Mathematical Institute, Vavilova 42, RU-117333 Moscow, Russia

⁶Konrad-Zuse-Zentrum für Informationstechnik Berlin, D-14195 Berlin, Germany

In order to obtain predictions for the real world from lattice QCD, we have to extrapolate the lattice data to the continuum and to the chiral limits. Recently the Bielefeld group [1] and the CP-PACS collaboration [2] using different fermion actions obtained consistent values for the critical temperature T_c in the chiral limit, albeit on rather coarse lattices at $N_t = 4$ and 6. Edwards and Heller [3] determined T_c for $N_t = 4$, 6 using nonperturbatively improved Wilson fermions. We compute T_c on finer lattices with $N_t = 8$ and 10 with high statistics.

We use non-perturbatively improved Wilson fermions with c_{sw} was calculated in [4] and Wilson action. Configurations are generated on $16^3 \cdot 8$ and $24^3 \cdot 10$ lattices at various parameters. We use results obtained at T=0 to fix the scale. The contour plot of lines of constant r_0/a and m_{π}/m_{ρ} is shown in Ref. [5]. The Polyakov loop susceptibility is used to determine T_c . We get values for T_c : $T_c=196(4)$ MeV $(m_{\pi}/m_{\rho}=0.64(3), a/r_0=0.201(4)),$ $T_c=210(4) \text{MeV}(m_{\pi}/m_{\rho}=0.77(3), a/r_0=0.234(4)), T_c=219(3) \text{MeV}(m_{\pi}/m_{\rho}=0.81(4), a/r_0=0.225(4)).$ At small enough lattice spacing and quark mass one can extrapolate T_c to the continuum and the chiral limits using formula:

$$T_c r_0 = T_c^0 r_0 + C_a (\frac{a}{r_0})^2 + C_q (\frac{1}{\kappa} - \frac{1}{\kappa_c})^{\frac{1}{\beta\delta}},$$

where T_c^0 corresponds to the extrapolated value of T_c and β and δ are critical indices. We make an attempt to fit four values for $T_c r_0$ (see Table 1), obtained at rather large quark masses, to estimate the parameters in this extrapolation expression.

r_0	a/r_0	β	κ_t	L_t
D(1)	0.201(4)	5.2	0.1354	10
.53(1)	0.234(4)	5.2	0.1345	8
.56(1)	0.225(4)	5.25	0.1341	8
0.57(2)	0.29(1)	5.2	0.1330	6
Fablo	1. Availab	lo date	for $T r$	

Table 1: Available data for $T_c r_0$.

We extrapolate the value of the critical temperature using different values of 0.54 and 1 as $1/\beta\delta$. If the transition in two-flavor QCD is second order, the transition is expected to belong to the universality class of the 3D O(4) spin model with $1/\beta\delta\approx 0.54$. If the transition is first order, then $1/\beta\delta=1$. Table 2 presents fitting results. We get the critical temperature in the continuum and in the chiral limits. In the case of $1/\beta\delta=0.54$, $T_c^0 = 174(8)$ MeV. This value agrees with values obtained in Refs. [1, 2]. In the case of $1/\beta \delta = 1$, $T_c^0 = 201(12)$ MeV. Although some lattice studies [1, 2] indicate second order chiral transition in two-flavor QCD, there are also results [6] supporting first order transition. Results of our fits do not allow to discriminate between first and second order transitions because of rather large errors in $T_c r_0$ values. We are continuing simulations on $24^3 \cdot 10$ lattice to get better precision of T_c value on this lattice.

acknowledgements

This work is supported by the SR8000 Supercomputer Project of High Energy Accelerator Research Organization (KEK) and SX-5 at Research Center for Nuclear Physics (RCNP) of Osaka University.

References

- [1] F. Karsch, A. Peikert, E. Laermann, Nucl. Phys. B605 (2001) 579.
- [2] A. Ali Khan et al., (CP-PACS), Phys. Rev. **D63** (2001) 034502.
- [3] R. G. Edwards, U. M. Heller, Phys. Lett. **B462** (1999) 132.
- [4] K. Jansen and R. Sommer (ALPHA collaboration), Nucl. Phys. **B530** (1998) 185.
- [5] S. Booth et al., Phys. Lett. **B519** (2001) 229.
- [6] M. D'Elia et al., hep-lat/0408008