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Neutron-induced soft error is a serious reliability issue for semiconductor devices [1-2]. It is therefore 

important to accurately predict neutron-induced soft-error rate (SER). There are two acceleration test 

methods for the estimation of neutron-induced soft-error rate [3]: an irradiation test using a white neutron 

beam, and an irradiation test using a quasi-monoenergetic neutron beam. We investigated the difference 

between both test methods using white and quasi-monoenergetic neutron beams at the Research Center 

for Nuclear Physics of Osaka University.  

We used 0.15ìm SRAM in the acceleration test. The test boards mounted with 0.15ìm SRAM were set 

up along the beam line. Before beam irradiation, an all-zero data pattern was written from the external 

controller. Failed addresses were stored in the external controller after beam irradiation. For the 

quasi-monoenergetic neutron beam, the energies used were 14, 26, 62, 98, 148, 198 and 392MeV and 

neutrons were produced by a 7Li(p,n)7Be reaction. Figure 1 shows the quasi-monoenergetic neutron beam 

energy spectrums obtained using a liquid scintillator. Each neutron energy spectrum has a high-energy 

peak and a low-energy tail. Low-energy-tail correction is essential for the accurate estimation of SER 

cross section in the quasi-monoenergetic neutron beam test. We performed the low-energy-tail correction 

using the iterative folding procedure described in ref.4. Figure 2 shows the nominal energy distribution at 

sea level [3] and the white-neutron-beam energy distribution of RCNP using the nuclear reaction between 

a Pb target and a 392MeV proton. The energy distribution of RCNP is very similar to the nominal energy 

distribution, but has a higher intensity.  

Figure 3 shows SEU cross sections as a function of neutron energy En in 0.15ìm SPRAM. SEU cross 

section rises rapidly and almost saturates at more than 60MeV. In the quasi-monoenergetic neutron beam 

irradiation test, SER was calculated using 

SER=∫σc(En)･F(En)dE,                                              (1) 

where σc(En) is the SEU cross section corrected for the contribution obtained from neutrons in the 

low-energy neutron tail and F(En) is the differential neutron flux, which is as a function of En. 

In the white-neutron beam irradiation test, we calculated the SER of 0.15 ìm SPRAM on basis of 

JEDEC STD [3]. Figure 4 shows the estimated SERs obtained in both acceleration tests. The SER of the 



white neutron beam is in good agreement with that of the quasi-monoenergetic neutron beam.   

We performed two SER acceleration tests with a quasi-monoenergetic neutron beam and a white 

neutron beam using 0.15ìm SPRAM. SER can be predicted accurately using the white neutron beam, as 

in the case using the quasi-monoenergetic neutron beam.  
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Figure 1. The quasi-monoenergetic neutron   Figure 2. The white neutron beam energy distribution 
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Figure 3. The neutron energy dependence of           Figure 4.comparison of SER from white and  

 SEU cross section of 0.15um SRAM                quasi-monoenergetic neutron beam 
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