T. Kawabata¹, H. Akimune², H. Fujita³, Y. Fujita⁴, M. Fujiwara³, K. Hara³, K. Hatanaka³, M. Itoh⁵,

Y. Kanada-En'yo⁶, S. Kishi⁷, K. Nakanishi³, H. Sakaguchi⁷, Y. Shimbara³, A. Tamii³, S. Terashima⁷,

M. Uchida⁸, T. Wakasa⁹, Y. Yasuda⁷, H. P. Yoshida³, and M. Yosoi³

¹Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan

²Department of Physics, Konan University, Kobe, Hyogo 658-8501, Japan

³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

⁴Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

⁵Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578, Japan

⁶Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁸Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

⁹Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

Alpha particle cluster is an important concept in nuclear physics for light nuclei. On the basis of the Ikeda diagram, the cluster structure is expected to emerge near the α -decay threshold energy. It has been suggested that the 7.65-MeV 0_2^+ state in ¹²C, which locates at the excitation energy higher than the 3α -decay threshold by 0.39 MeV, has a 3α -cluster configuration.

It has been proposed that the 0^+_2 state is described by introducing a quite new concept of the nuclear structure, *i.e.*, this state has a dilute-gas-like structure where three α particles are weakly interacting and are condensed into the lowest *s*-orbit [1]. Similar dilute-gas states of α clusters have been predicted in self-conjugate N = 4n nuclei. The next natural question addressed is whether such a dilute state of clusters exists in the other $N \neq 4n$ nuclei like ¹¹B.

Recently, an exotic character of the $3/2_3^-$ state at $E_x = 8.56$ MeV in ¹¹B was found in the measurement of the Gamow-Teller (GT) and spin-flip M1 strengths for excited states in ¹¹B and its analog in ¹¹C [2]. The GT and spin-flip M1 strengths for the $3/2_3^-$ state are abnormally quenched in comparison with the other states. The $3/2_3^-$ state in ¹¹B locates at the excitation energy lower than the α -decay threshold by 100 keV and is not well described by the shell-model calculations. Hence, it is very interesting to study the nuclear structure of this $3/2_3^-$ state in view of cluster physics.

In the present work, the isoscalar monopole and quadrupole excitation strengths in ¹¹B have been obtained by measuring the ¹¹B(d, d') reaction at $E_d = 200$ MeV at the Research Center for Nuclear Physics, Osaka University. The excitation strengths have been compared with the theoretical values by the antisymmetrized molecular-dynamics (AMD) calculation.

It is found that the AMD calculation excellently reproduces the measured excitation strengths in ¹¹B. Although the electric quadrupole strength for the $3/2_3^-$ state predicted by AMD is much smaller than the known value [3] reported in the previous (e, e') experiments, we examined the original papers [4, 5] and found that this value is quite unreliable due to the wrong assumption in the previous analyses. We have analyzed the existing (e, e') data again and found that those data are quite consistent with the present experimental and theoretical results.

The $3/2_3^-$ state is found to be strongly excited by the monopole transition and is considered to have a $2\alpha + t$ cluster wave function in the same manner as that the 0_2^+ state in ¹²C has a 3α cluster structure. From the analysis of the monopole excitation strengths with the AMD calculations, the $3/2_3^-$ state is suggested to have a loosely bound $2\alpha + t$ cluster structure with a dilute density, for the first time.

References

- [1] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).
- [2] T. Kawabata *et al.*, Phys. Rev. C **70**, 034318 (2004).
- [3] F. Ajzenberg-Selove, Nucl. Phys. A506, 1 (1990).
- [4] P. T. Kan et al., Phys. Rev. C 11, 323 (1975).
- [5] E. Spamer, Z. Phys. **191**, 24 (1966).