Cross section for the ${}^{186,187,189}Os(n,\gamma)$ reaction at the cold neutron energy

T. Ohta^a, M. Segawa^a, Y. Temma^a, Y. Nagai^a, M. Ohshima^b, A. Kimura^b, T. Ohsaki^c

^aResearch Center for Nuclear Physics RCNP, Osaka, Japan ^bJapan Atomic Energy Agency, JAEA, Japan ^cTokyo Institute of Tecnology, Tokyo, Japan

Cross sections for the ^{186,187,189} $Os(n, \gamma)$ reactions at cold neutron energy were measured in connection with ¹⁸⁷ $Re/^{187}Os$ nucleochronometer[1] at JRR-3 in JAEA(Japan Atomic Energy Agency). Cold neutrons were obtained by cooling neutrons from reactor with liquid hydrogen. γ -ray spectrum from the reactions were measured with anti-Compton Ge spectrometer with energy resolution(FWHM) of 2.0keV at 1MeV and 6keV at 7MeV. The γ -ray detection efficiency was 20% at 1332keV. We used highly enriched Os samples: ¹⁸⁶ $Os(n, \gamma)(99.55\%)$, ¹⁸⁷ $Os(n, \gamma)(99.4\%)$ and ¹⁸⁹ $Os(n, \gamma)(99.08\%)$. A γ -ray spectrum following the ¹⁸⁶ $Os(n, \gamma)$ reaction is shown Figure1

Figure 1: γ -ray spectrum following ${}^{186}Os(n, \gamma)$ reaction

More than 400 γ -ray lines were observed including full energy, single escape and double escape peaks, and background. We show obtained γ -ray strength for the neutron capture reactions on ¹⁸⁶Os, ¹⁸⁷Os, and ¹⁸⁹Os in Figures. 2, 3, and 4, respectively together with those of previous ones[2][3][4]. The data obtained from NNDC(National Nucler Data Centar).Here, in these Figures, the highest energy of γ -rays is c.s \rightarrow g.s. , and these energy is 6292.6keV for ¹⁸⁶Os, for 7889.3keV ¹⁸⁷Os, and 7791.6keV for ¹⁸⁹Os, respectively.

Figure 2: γ -ray strength of ${}^{186}Os(n,\gamma)$

Figure 4: γ -ray strength of ${}^{187}Os(n, \gamma)$

Figure 3: γ -ray strength of ${}^{189}Os(n, \gamma)$

Figure 5: compare cold to keV

We could assign 303 γ -rays for ¹⁸⁶Os, 384 for ¹⁸⁷Os, and 289 for ¹⁸⁹Os, respectively. For ¹⁸⁷Os and ¹⁸⁹Os, difference from comparison between this work and past experiment can't be seen remarkable sign. While for ¹⁸⁶Os, in high-energy and low-energy γ -ray strength can be seen differene. Especially 6217.8 keV line up this work with past experiment, but it is 21.3 times greater than past experiment at γ -ray strength. In oder to study the γ -ray decay pattern from the neutron capture by Os samples to low-lying states, we compared the γ -ray spectrum thus obtained with that by the keV neutron capture reactions for Os samples taken with a NaI(Tl) spectrometer, which is shown Figure 5. Here, the γ -ray spectrum taken by a NaI(Tl) spectrometer for cold neutron was obtained using the spectrum taken by the Ge detector with use of a response function of the NaI(Tl) spectrometer. We clearly see a difference between cold neutron energy spectra and keV neutron energy one. Further analyes including their cross sections are progress.

References

- [1] M.LINDEER et al., Geochim. Cosmochim. Acta 53, 1597
- [2] P.TPROKOFEV, L.I.SIMONOVA Izv. Akad. Nauk SSSR, Ser. Fiz. 38(1974)2135
- 3 P.FETTWEIS, J.C.DEHAES Z.Phys. A314(1983)159
- [4] R.S.CASTEN, M.R.MACPHAIL, W.R.KANE & d.BREITIG Nucl, phys A316