Properties of the tensor correlation in He isotopes

T. Myo¹, S. Sugimoto², K. Katō³, H. Toki¹ and K. Ikeda²

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

²Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

³ The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan.

The tensor force is an essential component in nuclear force and plays an important role in the nuclear structure. In 4 He, the exact calculations show that the contribution of the tensor force in the energy is comparable to the central one.

It is an important problem to understand the effect of the tensor force on the nuclear structure in a physically transparent manner by explicitly describing the tensor correlation in the model space[1, 2, 3, 4, 5, 6] In this study, we investigate the roles of tensor force in ⁴He and ⁵He and start with the extended shell model approach for ⁴He, which is considered to optimize the tensor correlation of this nuclei. For ⁵He, we employ the "Tensor-optimized ⁴He cluster"+n model, and see the effect of the internal degrees of freedom of the tensor correlation on the structures of ⁵He.

We examine what kind of correlation tensor force (tensor correlation) produces. The tensor force tends to change the parity of the nucleon single particle orbit due to the $(\boldsymbol{\sigma} \cdot \boldsymbol{r})$ operator. This is originated from the pion (pseudoscalar meson) because the tensor force mostly comes from the one-pion-exchange potential. Then, the 0s and 0p orbits is considered to be coupled by the tensor force in ⁴He, and we describe ⁴He as $(0s)^4 + (0s)^2(0p)^2 + \cdots$. Based on this idea, we extend the model space of ⁴He up to *h*-shell within the 2p-2h excitation. This model converges the solutions, such as the contribution of the tensor force and *D*-state probability. For effective *NN* force, we use Akaishi force[4, 5, 6] constructed from the *G*-matrix theory using AV8' force, and consists of the central, tensor, and LS parts. We show the results of ⁴He in Table 1. The large contribution of the tensor force is obtained and the probability (*P*) of the $(0s_{1/2})^2(0p_{1/2})^2$ component is large via 0⁻ coupling of the $0s_{1/2}-0p_{1/2}$ orbits. This reflects the pion nature.

Next we analyze the resonances of ⁵He by solving the coupled channel problem of ⁴He+n. Due to the large mixing of $0p_{1/2}$ component in ⁴He, the Pauli blocking mainly occurs in the $1/2^-$ state in ⁵He and 30% of the observed splitting energy of $1/2^--3/2^-$ arises, which is consistent with old studies[8]. We furthermore investigate the effects of the tensor correlation on the *d*-wave properties of ⁴He+n system. The overall reproduction can be seen in the phase shifts, shown in Fig. 1.

Table 1: Results of 4 He.

Eenergy [MeV]	-27.6
$\langle V_{\text{tensor}} \rangle [\text{MeV}]$	-53.2
$P[(0s_{1/2})^4]$ [%]	85.66
$P[(0s_{1/2})^2(0p_{1/2})^2_{JT=10}]$	4.1
$P[(0s_{1/2})^2(1s_{1/2})(0d_{3/2})_{10}]$	2.3
$P[(0s_{1/2})^2(0p_{3/2})(0f_{5/2})_{10}]$	2.0
P[D]	9.1

Figure 1: Results of ${}^{4}\text{He-}n$ scattering phase shifts.

References

- [1] H. Toki, S. Sugimoto, K. Ikeda, Prog. Theor. Phys. **108**,903(2002).
- [2] Y. Ogawa, H. Toki, S. Tamenaga, H. Shen, A. Hosaka, S. Sugimoto and K. Ikeda, Prog. Theor. Phys.111,75(2004).
- [3] S. Sugimoto, K. Ikeda, H. Toki, Nucl. Phys. A740,77(2004).
- [4] Y. Akaishi, Nucl. Phys. A738,80(2004).
- [5] K. Ikeda, S. Sugimoto, and H. Toki, Nucl. Phys. A73873(2004).
- [6] T. Myo, K. Katō and K. Ikeda, Prog. Theor. Phys. 113,763(2005).
- [7] S. Nagata *et al.*, Prog. Theor. Phys. **22**,87(1959).
- [8] T. Terasawa, Prog. Theor. Phys.22,150(1959); *ibid.* 23,87(1960). A. Arima and T. Terasawa, Prog. Theor. Phys.23,115(1960).