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A four-nucleon scattering calculation with modern two- and three-nucleon interactions is one of the most
challenging calculations in few-body physics. The four-body Faddeev-Yakubovsky (FY) equations are equivalent
to the Schödinger or Lippmann-Schwinger (LS) equation applied to a four-body system, and the equations are
employed in order to study four-nucleon systems accurately. One of the hurdles to solve the FY equations is
the size of the matrices due to three variables to express the dynamics of a four-body system.

To clear this hurdle, we often represent the three-body and two-two subamplitudes in separable form, as
well as two-body potentials, which is one of the standard approaches to three-body calculations (see, e.g. Ref.
[1]). It transforms an integration into a sum of separable terms. If the number of separable terms needed to
obtain converged results is considerably fewer in the separable expansion, it would be very useful to clear this
hurdle, reducing the size of the matrices to be solved. But most of the methods require to solve the LS equation
or eigenequation based on it, and numerical errors are accumulated with incleasing the number of separable
terms. Therefore, in this paper, we propose to extend the finite range expansion[2] (FRE) method, which don’t
need to solve the eigenequations. This method was originally introduced to represent two-body potentials in
separable form. It gives well converged solutions of the three-body Faddeev equations (see, e.g. [1]).

The basic idea of FRE for the two-body subsystem is as follows. We start from the two-body LS equation.
In this equation, wave functions are always multiplied by the potentials. Thus, if potentials are of finite range
in configuration space, we can expand the wave functions with a complete set of basis functions within that
range. In the three-body subsystem, Alt-Glassberger-Sandhas[3] or Amado-Mitra-Faddeev-Lovelace (see, e.g.
[4]) equations are the start corresponding to the LS equation in the two-body subsystem, and there are also
the same kind of equations in the two-two subsystem. The Born terms of these equations correspond to the
potential in the LS equation, and, if the terms are of finite range, we can extend FRE to the three-body and
two-two subsystems. Details of this extension are described in Ref. [5].

This paper reports to check numerical convergence of the solutions of the FY equations applying to a four-
nucleon system. We employ the Yamaguchi potentials as the nucleon-nucleon interactions for the 1S0 and
3S1-3D1 states, performed calculations for the Jπ = 0+, T = 0 state of the four-nucleon system, and omit the
Coulomb force. Defining the energy as 0 at the four-body break-up threshold, we check the convergence in the
negative energy region, because the Born terms of the three-body and two-two subsystems are of finite range
and we can extend FRE directly. More details of the calculations for this feasibility study are also in Ref. [5].

Table 1 shows the convergence in the phase shift
for 3N+N elastic scattering. The calculations are per-
formed at −3.45 MeV, which is in between 2N+2N
and 2N+N+N break-up thresholds. We found that
FRE needs only 18 and 14 ranks for four-digit conver-
gence in the three-body and two-two subsystems, re-
spectively. We were able to realize the convergence up
to 6 digits with FRE. In the three-body subsystem, for
instance, 18 ranks implies 6 basis functions per chan-
nel. If we solve the FY equations without separable
expansion, typically we need 30-40 sites per channel
to perform a numerical integration. Thus, we found
that FRE can reduce the size of the matrices of the
FY equations without spoiling the numerical stability.

Table 1: Convergence of the phase shift (in degrees)
for 3N+N elastic scattering at −3.45 MeV. The first
column and row list the numbers of ranks for the
three-body and two-two subsystems, respectively.

2 8 14 20
1 -9.8741 -6.2460 −6.2334 −6.2334
6 13.7064 16.8625 16.8918 16.8919

12 13.1850 16.3836 16.4128 16.4128
18 13.1872 16.3850 16.4142 16.4142
24 13.1787 16.3766 16.4057 16.4057
30 13.1782 16.3761 16.4053 16.4053
36 13.1782 16.3761 16.4052 16.4053
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