
Charge and Parity Projected Relativistic Chiral Mean Field Model for 4He

Y. Ogawa1, H. Toki1, S. Tamenaga1,
S. Sugimoto2, and K. Ikeda3

1Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan
2Department of Physics, Kyoto University, Kyoto 606-8502, Japan

3Institute for Chemical and Physical Research (RIKEN), Wako, Saitama 351-0198, Japan

1. Introduction

One of the fundamental goal of nuclear physics is to understand the mutual relation between the nuclear
structure and the nuclear force. Recently, variational calculations based on the realistic nuclear force in the
real space by Argonne-Illinois Group were found successful in describing light nuclei (A≤ 10) and showed
that the pion plays a crucially important role to determine the nuclear structure [1]. The contribution of the
pion exchange interaction to the total binding energy is about 70 ∼ 80 % of the net two-body interaction.
This ab initio calculation is strongly motivated us to construct the theoretical framework to reflect the unique
character of the pion in the nuclear structure on the same footing of other mesons. An introduction of the
finite pion mean field breaks the parity and isospin symmetries in the intrinsic single-paritcle states, beacuse
of the psuedescalar and isovector character which leads to coupling with the nucleon by spin-flip and changes
in the parity and the charge number. The effect of the pion-nucleon intaraction appears to be large for jj
closed-shell nuclei, while for the LS closed-shell nuclei the effect turned out to be very weak. The effect of
pion-nucleon interaction inceases at the nuclear surface[2]. The single-particle energy level structure, especially
for the splitting between the spin-orbit partners clearly appears for jj closed-shell nuclei[3]. This phenomenon
is an important consequence of pionic correlation due to it’s unique character. For the LS closed-shell nuclei,
however, the result is not satisfactory. This problem suggests us to make serious care of the treatment of the
finite pion mean field. We here discuss on the relativistic mean field framework which takes into account the
pionic effect with the variation after parity and charge number projection. We call this new framework the
charge and parity projected relativistic mean field (CPPRMF) model. We then apply this framework for the
ground state of 4He and discuss the relation between the mechanism of the pionic correlation and the nuclear
ground state structure.

2. Chiral sigma model Lagrangian

We start with the linear σ model with the ω meson for the description of nuclei from a point of view of the
chiral symmetry. The chiral symmetry is known to be the most important symmetry in the strong interaction.
At the hadron level, the chiral symmetry is well described by using the linear σ model of Gell-Mann and Levy[4].
The pions emerge as Nambu-Goldstone bosons from the spontaneous SU(2) chiral symmetry breaking[5]. As for
the pion-nucleon interaction, the pseudoscalar type leads to an unrealistically large attractive contribution from
the negative-energy states, because γ5 involve strong coupling between positive- and negative-energy states. We
thus employ the nonlinear realization of the Lagrangian density for the finite nuclear system, which is obtained
by the Weinberg transformation of the linear σ model[6]. The pseudovector type, γ5γµ, decouples the positive-
and negative-energy states. We take the lowest-order term in the pion field, and the Lagrangian[3] is
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We have set M = gσfπ, m2
π = µ2 +λf2

π , m2
σ = µ2 + 3λf2

π, and mω = g̃ωfπ. We take the empirical values for
the masses and the pion decay constant as M = 939 MeV, mω = 783 MeV, mπ = 139 MeV, and fπ = 93MeV.
The coupling constants of the σ-nucleon gσ and the σω-coupling constant g̃ω are automatically fixed by the
relations gσ = M/fπ = 10.1 and g̃ω = mω/fπ = 8.42, respectively. The strength of the σ-meson self-energy
terms depends on the σ-meson mass, mσ, through the relation λ = (m2

σ −m2
π)/2fπ. The σ-meson mass and the

ω-nucleon coupling constant, gω, are the free parameters. We introduce the pion-nucleon coupling constants gA

into this Lagrangian. The characteristic feature of this Lagrangian is the Higgs mechanism, where not only the
nucleons but also the ω mesons obtain their masses by σ-meson condensation in vacuum[7].

3. Charge and parity projected relativistic mean field theory

Pion has the character of pseudoscalar and isovector, which violates the parity and isospin symmentry. We



thus demand the single-particle wave function consists of the four component with different parity and charge
so that the pion is able to contribute to the finite mean field as other mesons. The nucleon Dirac spinor is given
as

ψi = ψi(p,+) + ψi(p,−) + ψi(n,+) + ψi(n,−). (2)

The intrinsic mixed parity and charge number total wave function is defined by a Slater determinant of a set
{ψi, 〈ψi|ψj〉 = δij};

Ψ =

A∏

i=1

a†i |0〉, i = nτjm. (3)

Here the creation operator a†i creates a nucleon state with the quantum number i.
Since the nuclear state is a good eigenstate of parity and charge number, it is necessary to restore the parity

and charge number of the total wave function. We obtaine the charge number and parity pprojected total wave
function;

Ψ[Z,±] = Pc(Z)Pp(±)Ψ, (4)

by using the following charge number, Pc(Z), and parity, Pp(±), projection operators as,
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1
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i

2
, (5)
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2
, P̂ =

A∏

i=1

p̂i, p̂iψi(~r, ξ) = γ0ψi(−~r, ξ). (6)

An essential point of this study is that we adopt the charge number and parity projected wave function given
in Eq.(4) as a trail function. This variational scheme is named the variation after projection(VAP). We will
show the importance of this variational scheme in the next section. The variation with respect to the unknown
functions included in the total energy E[Z,±], the meson fields and occupied single-particle states;

δE[Z,±] = δ
〈Ψ[Z,±]|Ĥ |Ψ[Z,±]〉

〈Ψ[Z,±]|Ψ[Z,±]〉
= 0, (7)

leads to the field equations for mesons and charge and parity projected relativistic mean field equations for
nucleon. Here the total hamiltonian is given through the relation between the Lagrangian density and the
Hamiltonian density;

Ĥ =

∫
d3xH H =

∑

φ

∂L

∂φ̇
φ̇− L, (8)

where φ denotes the nucleon field ψi, and π−, σ−, and ω-meson fields.

4. Parity projection and variational method

Let us consider the positive and negative parity states which are obtained by operating the parity projection
from the intrinsic parity mixed state to understand the mechanism of the pion-nucleon interaction. We represent
the parity mixed single-particle state as, |jm〉 = αj |jm, κ〉 + βj |jm, κ̄〉. The intrinsic parity mixed total wave
function which is fully occupied up to the Fermi level defined as just multiple state of single particle states for
simplicity,

|Ψ〉 =
∏
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(
αj |jm, κ〉 + βj |jm, κ̄〉

)
(9)

=
∏
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∏
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αj |jm, κ〉 + · · ·

The first term corresponds to the state where all the single-particle states are occupied by the normal parity
state and it is |0p− 0h〉 state. This state has the 0+ state. In the second term, |j1m1, κ〉 state is replaced with
the opposite parity state, |j1m1, κ̄〉. It means that in the |0p − 0h〉 ground state, a particle moves from the
normal parity single particle state, |j1m1, κ〉, to the abnormal parity state, |j1m1, κ̄〉. Thus the second term
means the sum of |1p − 1h〉 states, which has 0− spin-parity due to the π(0−)-nucleon coupling. In the same
manner, the third term means two 0− |1p − 1h〉 states, namely the |2p − 2h〉 states which has the 0+ parity.



Therefore, the wave functions which are projected out to the positive and negative parity state, respectively are
written as,

Pc(+)|Ψ〉 = |(0p− 0h)〉 + |(2p− 2h)〉 + |(4p− 4h)〉 + · · ·, (10)

Pc(−)|Ψ〉 = |(1p− 1h)〉 + |(3p− 3h)〉 + · · ·. (11)

The character of the parity projected wave function is that the positive parity state consists of even number
of 1p-1h pairs with 0−. It means that the positive parity projection provides 2p-2h states as major correction
terms. The matrix element of Hamiltonian,

〈0p− 0h|Ĥ|2p− 2h〉, (12)

gives the dominant component for the πa-nucleon interaction, while for other mesons, σ, and ω-nucleon inter-
actions the 〈0p− 0h|Ĥ |0p− 0h〉, 〈2p− 2h|Ĥ|2p− 2h〉, are the dominant components.
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Figure 1: The total energy is shown in the left-hand panel and the pion energy per particle is shown in the
right-hand panel as a function of the pion-nucleon coupling constant for the cases of variation before projection
(diamonds), variation after projection (solid circle) and parity mixed RMF (open circle). gA(0) is the axial
vector coupling constant in the free space πNN scattering.

Figure 1 shows the total energy and the pion energy per particle as a function of the pion-nucleon coupling
constant squared. In the parity mixed relativistic mean field framework there is a critical coupling constant
where the pion mean field starts to become finite. In the weak coupling region at around (gA/gA(0))2 ≤ 1,
we do not get any energy gain by the VBP method. On the other hand, we obtain a large energy gain by
the VAP method in this region. It is very important that the critical coupling constant is sufficiently small as
compared with that of the free space πNN coupling, gA = 1.25, and it means that such state where the pion
mean field becomes finite exists as more stable state. In the parity mixed relativistic mean field framework, the
LS-shell closed nuclei which have small contributions from the pion. In the parity projected relativistic mean
field framework based on VAP scheme, we can take into account the effect of pion-nucleon interaction, namely
2p-2h correlations. The LS-closed shell nuclei also have sufficiently large effect of the pion-nucleon interaction.
It is indispensable to solve the finite pion mean field based on the VAP scheme, especially in case of small
pion-nucleon coupling.

5. Results

We apply the new relativistic mean field framework (CPPRMF) constructed in the previous section to 4He
nucleus. We assume that the intrinsic ground state is a fully occupied state as, {nτjm} = {0, 1, 1/2,±1/2}
and {0, 2, 1/2,±1/2}. The intrinsic total wave function (3) is a mixed state of charge number, Z = 0 ∼ 4 and
positive and negative parity states. The total wave function of the 4He ground state (0+, Z = 2) is obtained
by projecting out the positive parity and charge state, Z = 2, according to Eq.(4).

In the CPPRMF method, not only the ~σ ·τ0~∇π0 type, but also the ~σ ·τ− ~∇π+ and ~σ·τ+ ~∇π− type interactions
are active and we can take into account this effect by the variation after charge number projection. Thus the
amount of the expectation value of the pion energy, Uπ, is around 3 times as large as that obtained in the case
of the parity projected relativistic mean field method. This fact shows that the critical point, where the pion
mean field arises, is sufficiently reduced. It means that more stable state is realized when the pion mean field
becomes finite. Therefore, variation after projection method is important to construct the mean field framework
with mixed parity and charge number to take properly into account the effect of the pion-nucleon interaction.

We study the constituents of the total energy for the case of finite pion mean field in the CPPRMF method
as shown in Fig. 2. We adjust the ω-nucleon coupling constant to reproduce the total energy. We set pion-
nucleon coupling constant gA = 1.15. In general, as the pion mean field becomes larger, the kinetic energy
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Figure 2: Constituents of the total energy for the ground state with 0+ of 4He in the CPPRMF method. On
the left-hand panel are the pion potential (solid squares), σ + ω-meson potentail (solid circles) and the kinetic
energy (open squares, the scale is shown on the right axis). The total energy is represented by open circles.
The matter r.m.s. radii are shown on the right-hand panel.

becomes larger and the central potential, Uσ +Uω, becomes smaller. This is the general tendency when the pion
mean field arises. The mechanism of the energy gain due to the pion-nucleon interaction is shown in Eq.(16).
To make the 2p-2h state for 4He nucleus, for example, since two nucleons jump from the 0s1/2-orbital into
the 0p1/2-orbital across the major shell in the shell model language, it needs large kinetic energy. The matter
r.m.s. radius becomes small as the pion mean field increases. There is the strong correlation between the pion
potential and the kinetic energy.
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Figure 3: Square of components of the single particle wave function for the case with mσ = 850 MeV. The
dashed line represents the positive parity(0s1/2) proton state, the solid line represents the negative parity(0p1/2)
neutron state, the dotted line represents the positive parity neutron state, and the dot-dashed line represents the
negative parity proton state, respectively. The left-hand panel shows the proton dominant state, and right-hand
panel shows the neutron dominant state.

Figure 3 shows the square of the intrinsic single-particle wave function in CPPRMF method. The proton
dominant single-particle wave functions (τ =1) is shown in the left-hand panel. The dominant component is the
positive parity (s1/2) proton state. This state couples with the negative parity (p1/2) neutron state through the
pion-nucleon interaction. The negative parity (p1/2) neutron component has its peak at around 0.8 fm. This
component becomes quite compact as compared with that of normal harmonic-oscillator p-shell wave function,
which has its peak at around 1.5 fm. We calculate the overlap between the (p1/2) proton component(upper
part) in the CPPRMF method and the 0p-shell state of harmonic-oscillator wave function with various width,
then the oscillator length at b= 0.85 fm gives the maximum amount of overlap. This tendency has been clearly
shown in the non-relativistic treatment for the case of the tensor force [8]. The 2p-2h state in the CPPRMF
method is not to be expressed in terms of the usual simple 0p state.

The point proton density distribution of 4He ground state is shown in left-hand panel of Fig. 4. The density
distribution in the CPPRMF method is depressed at the central part. It has the peak of the distribution
corresponds to that of the negative parity (p1/2) proton component in Fig.4. This is because the pion-nucleon
interaction induces the admixture of p1/2 and s1/2 components. There is no depression at central part unless
pion-nucleon interaction works. The form factor of 4He is obtained by Fourier transformation and shown in
right-hand panel. The form factor obtained in CPPRMF method has a dip at around the momentum transfer
squared q2 = 10 fm−2. This position is related with the depression of the density distribution. Without the pion-
nucleon interaction, the form factor has the dip at larger momentum region, around q2 = 16 fm2. As the pion
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Figure 4: Density distribution (left-hand panel) and form factor (right-hand panel) for the 4He ground state in
the case with mσ = 850 MeV, gA = 1.15(solid curve). Those who obtained by the usual relativistic mean field
calculation are also shown by the dashed curve, which corresponds to the (0s1/2)

4 configuration.

mean field becomes stronger the dip position gradually approaches to around q2 = 10 fm−2. Another critical
feature of the form factor in CPPRMF method has a large amount of second maximum at high momentum
region. It is related with the increase of the kinetic energy as the pion mean field works strongly. This fact
means that the pionic correlation needs higher momentum components. In this calculation the amount of the
second maximum significantly grows up from the case without pion mean field. The dip position and the second
maximum at higher momentum clearly indicate the pion effect in the nucleus. The effect of the meson-exchange
current is included naturally as a relativistic effect in the CPPRMF method. This is to be contrasted with any
non-relativistic models[9].

6. Summay

We have discussed the role of the pion for the nuclear ground state structure by constructing the relativistic
mean field with variation after charge number and parity projection scheme. We have shown that the state
where the pion mean field becomes finite is realized more stable. In the VAP scheme, the LS closed-shell nuclei
also have sufficiently large pionic effect. The finite pion mean field is obtained by the delicate balance between
the energy loss due to the kinetic energy and the profit due to the pionic correlation in the total energy. We have
obtained the ground state wave function of 4He in the CPPRMF method. The pionic correlation leads to the
large admixture of the 0s1/2 state and 0p1/2 state accompanied with the increase of the kinetic energy. The pion
potential comes out to be close to about 70 %, which agrees with the variational calculation by Argonne-Illinois
Group. The resulting wave function provides quite a satisfactory results for the form factor of 4He.
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