Analog of the Giant Dipole Resonance in ⁴He

E. Matsumoto,¹ S. Nakayama,¹ R. Hayami,¹ K. Fushimi,¹ H. Kawasuso,¹ K. Yasuda,¹ T. Yamagata,²

H. Akimune,² H. Ikemizu,¹ M. Fujiwara,³ M. Yosoi,³ K. Nakanishi,³ K. Kawase,³ H. Hashimoto,³ T. Oota,³

K. Sagara,⁴ T. Kudoh,⁴ S. Asaji,⁴ T. Ishida,⁴ M. Tanaka,⁵ M.B. Greenfield⁶

¹Department of Physics, University of Tokushima, Tokushima 770-8502, Japan

²Department of Physics, Konan University, Kobe 658-8501, Japan

³Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

⁴Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

⁵Kobe Tokiwa College, Kobe 654-0838, Japan

⁶Department of Physics, International Christian University, Tokyo 181-0015, Japan

The analog of the giant dipole resonance (GDR) in ⁴He was investigated by using the ⁴He(⁷Li,⁷Be) reaction at an incident energy of 455 MeV and at forward scattering angles. The resonance-like structure was observed above $E_x=20$ MeV, which is consistent with the previous work by using various reactions. The structure was ascribable to $\Delta L=1$ transitions from the angular distribution of differential cross sections of the singles spectrum for ⁴He measured in angular range of $\theta_L \leq 4^{\circ}$. The singles spectral shape was found to be very similar to the ⁴He(p, p') spectrum measured at $E_L=300$ MeV and $\theta_L=8^{\circ}$ where the $\Delta L=1$ transition is dominant [1]. The coincidence spectrum at $\theta_L = 0^{\circ}$ was obtained by measuring ⁷Be-scattered particles in coincidence with the 0.43-MeV ⁷Be γ -ray [2]. The spin-nonflip ($\Delta S=0$) spectrum was deduced from the singles and coincidence spectra by taking into account the detection efficiency for the 0.43-MeV γ -ray of about 12.5%. It should be mentioned that the $\Delta S=0$ spectral shape is rather insensitive to the detection efficiency. From the $\Delta S=0$ spectrum thus deduced, the cross sections of the photodisintegration to the GDR in ⁴He were derived from the $\Delta S=0$ spectrum by taking into account a similarity of relevant transition operators.

The $\Delta S=0$ cross section with $\Delta L=1$, $d^2\sigma/dEd\Omega$, obtained in the ⁴He(⁷Li,⁷Be) reaction is feasible to deduce the $E1\gamma^{-4}$ He photodisintegration cross sections, $\sigma_{E1\gamma}$, by taking into account a similarity of relevant transition operators. The $\sigma_{E1\gamma}$ is described as $4.0K \times E_x d^2 \sigma/dEd\Omega$, where K is a proportional coefficient including kinematical factors. The excitation energy E_x in ⁴He and the double differential cross section are given in units of MeV and mb/sr/MeV, respectively. The proportional coefficient K was determined to be about 0.033 by normalizing the $\sigma_{E1\gamma}$ to the data of the E1 total photodisintegration measured at $E_x = 40-45$ MeV. The result of $\sigma_{E1\gamma}$ thus obtained was shown in Figure 1. The GDR was found to have an pronounced peak at around $E_x = 25-30$ MeV. The result agrees with the previous data $\sigma(\gamma, n) + \sigma(\gamma, p)$ recommended by Calarco *et al.* [3], the recent data of $\sigma(\gamma, n) \times 2$ obtained by Nilsson *et al* [4], and the calculation with the LIT method [5]. But the present result is in deep contradiction with the recent data obtained by Shima *et al.* [6].

References

- [1] T. Yamagata *et al.*, Phys. Pev. **C74**, 014309 (2006).
- [2] S. Nakayama et al., Nucl. Instrum. Methods Phys. Res., Sect. A 404, 34 (1998).
- [3] J.R. Calarco et al., Phys. Rev. C27, 1866 (1983), and references therein.
- [4] B. Nilsson et al., Phys. Lett. B626, 65 (2005).
- [5] D. Gazit et al., Phys. Rev. Lett. 96, 112301 (2006), and references therein.
- [6] T. Shima et al., Phys. Rev. C72, 044004 (2005).

Figure 1: E1 photodisintegration cross section (closed circles) evaluated from the $\Delta S=0$ cross section for ⁴He. The hatched area is the sum of (γ, n) and (γ, p) data recommended by Calarco *et al.* [3]. Two recent data are also shown: $(\gamma, \text{total}) (\otimes)$ measured by Shima *et al.* [6] and $(\gamma, n) \times 2$ (\odot) measured by Nilsson *et al.* [4]. The dashed and solid curves represents the cross sections calculated by using the LIT method with the NN potentials and the NN + 3NF potentials, respectively [5].

