Search for High-Spin Isomers in N = 51 Isotones

T. Hori, T. Masue, K. Tajiri, J. Komurasaki, T. Nagasawa, D. Nishimura,

A. Sato, Y. Akasaka, T. Furukawa¹, T. Fukuchi, A. Odahara, T. Shimoda

Department of physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

¹RIKEN, Wako, Saitama 351-0198, Japan

High-spin isomers are systematically studied in N = 83 isotones [1]. The neutron number is the magic number 82 plus one and proton numbers are close to 64 sub-magic number. The spins and parities of these isomers are $49/2^+$ and 27^+ for odd and odd-odd nuclei, respectively, in N = 83 isotones with 60 Z 66. Configurations of these high-spin isomers are stretch coupled $[\nu(f_{7/2}h_{9/2}i_{13/2})\pi h_{11/2}^2]_{49/2}^+$ for odd nuclei and $[\nu(f_{7/2}h_{9/2}i_{13/2})\pi(h_{11/2}^2d_{5/2}^{-1})]_{27}^+$ for odd-odd nuclei. Large overlap of wave functions of the valence nucleons with high-j and high- Ω is explained to change the nuclear shape to be oblate. The high-spin isomer of ¹⁴⁷Gd was experimentally determined to have an oblate shape [1]. The high-spin isomers are caused by the sudden shape change from oblate to near spherical shape.

The high-spin isomers originated from the same type of isomerism are expected to be found in N = 51 isotones. Their neutron number is the magic number 50 plus one and the proton numbers are close to 40 sub-magic number. Configurations of high-spin isomers in N = 51 isotones are expected to be $[\nu(d_{5/2}g_{7/2}h_{11/2})\pi g_{9/2}^2]_{39/2}^{-1}$ for odd nuclei and $[\nu(d_{5/2}g_{7/2}h_{11/2})\pi (g_{9/2}^2 p_{1/2}^{-1})]_{20}^{+}$ for odd-odd nuclei. Recently, a high-spin isomer with life time of 1.1 μ s was observed in ⁹³Mo [2] for the first time in N = 51 isotones.

The experiment to search for other high-spin isomers in N = 51 was carried out at EN course [3] in Research Center for Nuclear Physics (RCNP). The ⁴⁰Ar beam with average intensity of 0.2 pnA and energy of 197 MeV was provided by the AVF cyclotron. The beam bombarded a ^{nat}Zn target of 1.9 mg/cm² with a lead backing which was used to collect the reaction products at the target position. The γ -rays emitted from the reaction products were detected by using 5 Ge detectors. These detectors are placed at $\theta = 30^{\circ}$, 60° , 90° , 120° and 150° with respect to the beam axis to measure the γ -ray angular distribution for the determination of the spins of the excited states. The prompt- and delayed- $\gamma\gamma$ coincidence measurements were performed in order to construct the level schemes and to search for the isomers. Coincidence events of 2.1×10^8 in total were recorded.

Figure 1 shows the projection spectra of $\gamma\gamma$ -coincidence measurements. The upper and lower spectra were obtained by setting gates on the prompt (± 240 ns) and the delayed (240 ~ 600 ns from the prompt peak) in time difference spectrum. In the upper spectrum, the γ -rays were assigned to be those of 18 reaction products. In the lower spectrum, delayed transitions can be observed. The γ -rays in the lower spectrum are assigned to be those deexciting the known isomers in ⁹⁰Mo, ⁹²Mo, ⁹⁴Mo and ⁹⁰Nb with life times of 1.12 μ s, 190 ns, 98 ns and 470 ns, respectively.

By the good S/N ratio of the γ -rays in the lower spectrum, this delayed- $\gamma\gamma$ coincidence method enables to search for isomers which exist in the reaction products that have small populations of a few mb such as ⁹⁰Mo and ⁹⁰Nb. In the lower spectrum, there are several unknown γ -rays which indicate the existences of new isomers. The analyses are in progress.

Figure 1: Projection spectra of $\gamma\gamma$ coincidence in the prompt (± 240 ns) and the delayed (240 ns - 600 ns) time coincidence region are shown in the upper and lower parts, respectively.

References

- [1] Y.Gono et al., Eur. Phys. A 13, 5 (2002) and references therein.
- [2] T.Fukuchi et al., Eur. Phys. J. A 24, 249 (2005).
- [3] T.Shimoda et al., NIM B **70**, 320 (1992).