Formation spectra of η -mesic nuclei by (π^+, \mathbf{p}) reaction at J-PARC and chiral symmetry for baryons

H. Nagahiro¹, D. Jido² and S. Hirenzaki³

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

² Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

³Department of Physics, Nara Women's University, Nara 630-8506, Japan

We investigate the properties of η -nucleus interaction in chiral models and their experimental consequences at J-PARC. One of the unique features of the η meson is that the η -nucleon channel strongly couples to the $N^*(1535)$ resonance. This feature enables us to investigate the in-medium properties of N^* through the formation of η -mesic nuclei. In this work, I calculate the η -mesic nuclei formation spectra by the (π^+, \mathbf{p}) reaction [1], which is expected to be performed by using the secondary beam at the J-PARC project. We discuss the appropriate experimental conditions in order to see the in-medium properties of N^* and the properties of the η -nucleus interaction clearly in the formation spectra of the η -mesic nuclei. We also discuss carefully the η -mesic nuclei studies performed in 1980s [2] and show clearly how to improve the observations.

For in-medium properties of N^* , there are some theoretical models paying respects to the chiral symmetry. In the chiral doublet model [3], in which N^* is regarded as a chiral partner of nucleon, the effect of the partial restoration of the chiral symmetry reduces the mass difference of N and N^* in nuclear medium, and, as a consequence, the level crossing of the η -meson and N^* -h modes may take place in finite density [4]. This level crossing yields the curious shape of the η -nucleus optical potential, which has the repulsive core inside a nucleus and the attractive pocket in the surface, and also has the strong energy dependence [5].

On the other hand, the chiral unitary model [6], in which N^* is introduced as a resonance dynamically generated by meson-baryon scattering, predicts the different feature of the in-medium properties of N^* . We show that these two chiral models give quiet different features of the η -nucleus optical potential and we can clearly observe this difference in the formation spectra and get new information of the η -nucleus interaction and the chiral symmetry in medium.

We think our theoretical evaluation is quite important and useful to design the experiments at J-PARC for the formation of η -mesic nuclei.

Figure 1: Formation spectra of the η -mesic nuclei by (π^+, p) reaction as functions of the excited energies with (a) the Chiral doublet model and (b) the Chiral unitary model.

References

- [1] H. Nagahiro, D. Jido and S. Hirenzaki, in preparation.
- [2] L. C. Liu and Q. Haider, Phys.Rev.C 34 (1986)1845, R. E. Chrien et al., Phys. Rev. Lett. 60 (1988) 2595.
- [3] C. DeTar and T. Kunihiro, Phys. Rev. D **39** (1989) 2805, D. Jido, Y. Nemoto, M. Oka and A. Hosaka, Nucl. Phys. A **671** (2000) 471, D. Jido, M. Oka and A. Hosaka, Prog. Theor. Phys. **106** (2001) 873.
- [4] D. Jido, E.E. Kolomeitsev, H. Nagahiro and S. Hirenzaki, in preparation.
- [5] D. Jido, H. Nagahiro and S. Hirenzaki, Phys. Rev. C 66 (2002) 045202, H. Nagahiro, D. Jido and S. Hirenzaki, Phys. Rev. C 68 (2003) 035205, Nucl. Phys. A 761 (2005) 92.
- [6] T. Inoue and E. Oset, Nucl. Phys. A **710** (2002) 354.