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Takayuki Myo1, Kiyoshi Katō2, Hiroshi Toki1 and Kiyomi Ikeda3

1Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan,
2Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan,

3The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan.

1 Introduction

The tensor force is an essential component in nuclear force and plays an important role in the nuclear
structure. The exact calculations clarified that the contribution of the tensor force is comparable to the central
case in the light nuclei. It is important to understand the effect of the tensor force on the nuclear structure. In
this study, we investigate the role of the tensor correlation in the neutron-halo nuclei 11Li, and their neighboring
nuclei.

A pioneering secondary-beam experiment found that the size of 11Li was surprisingly large, which was outside
of the common sense of Nuclear Physics [1]. This large size was later interpreted as due to the halo structure of
two neutrons around the 9Li core nucleus [2]. This finding together with others motivated the nuclear physics
community to start a new research field for the study of unstable nuclei and built new facilities of Radioactive
Ion Beams (RIB) in several laboratories as RIKEN, MSU, GSI, GANIL and others. Many experimental findings
were shown later for 11Li: a) The halo neutrons have almost equal amount of the s-wave component with respect
to the p-wave component [3]. b) The E1 strength distribution has a large enhancement near the threshold [4].
c) The charge radius is larger than that of 9Li [5].

The biggest puzzle from the theory side is the large s-wave component for the halo neutrons. If we interpret
this fact in the shell model, the shell gap at N = 8 has to disappear. However, no theory can explain this
disappearance and all the theoretical works for 11Li and neighboring nuclei had to accept that the 1s1/2 state
is brought down to the 0p1/2 state without knowing its reason[7, 8]. It is therefore the real challenge for
theoretician to understand this disappearance of the N = 8 shell gap, to be called s-p shell gap problem, which
is worked out in this paper by developing a framework to treat the tensor force explicitly in the nucleon-nucleon
interaction.

The tensor force plays an important role in the nuclear structure. For example, the contribution of the
tensor force in the binding of 4He is comparable to that of the central force[10, 11]. The tensor correlation
induced by the tensor force was demonstrated important for the 4He+n system [12, 13, 14]. In our recent
study [16], we developed a theoretical framework of the tensor-optimized shell model to treat the tensor force
in the shell model basis explicitly including 2p-2h excitations. We found that the (0s1/2)−2(0p1/2)2 excitation
of proton-neutron pair has a special importance in describing the tensor correlation in 4He [15, 14, 16]. In the
4He+n system, because this 2p-2h excitation receives the strong Pauli-blocking from the last neutron occupying
the p1/2-orbit, a considerable amount of the p1/2-p3/2 splitting in 5He is reproduced [14]. This Pauli-blocking
effect from the p1/2-orbit caused by the tensor force should be present also for 11Li.

Hence, it is very interesting to study the effect of the tensor correlation together with the pairing correlation
for the s-p shell gap problem in 11Li. This is the purpose of this paper. To this end, we shall perform the
configuration mixing based on the shell model framework for 9Li to describe the tensor and pairing correlations
explicitly. In particular, we pay attention to the special features of the tensor correlation. For 11Li, we shall
solve the configuration mixing of the 9Li+n+n problem which treats both correlations, and investigate further
the Coulomb breakup strength of 11Li and other observables to see the effect of these correlations.

2 Model

We shall begin with the introduction of the model for 9Li, whose Hamiltonian is given as

H(9Li) =
9∑

i=1

ti − tG +
∑
i<j

vij . (1)

Here, ti, tG, and vij are the kinetic energy of each nucleon, the center-of-mass term and the two-body NN
interaction consisting of central, spin-orbit, tensor and Coulomb terms, respectively. The wave function of
9Li(3/2−) is described in the tensor-optimized shell model[16]. We express 9Li by a multi-configuration Ψ(9Li) =∑

i ai Φ3/2−

i (bα), where we consider up to the 2p-2h excitations within the 0p shell for Φ3/2−

i in a shell model
type wave function. Here, we adopt the spatially modified harmonic oscillator wave function (Gaussian function)



as a single particle orbit and treat the length parameters bα of every orbit α of 0s, 0p1/2 and 0p3/2 as variational
parameters. This is important to optimize the tensor correlation[14, 16]. We solve the variational equation for
the Hamiltonian of 9Li and determine {ai} and the length parameters of three orbits.

For 11Li, the Hamiltonian of 9Li+n+n is given as

H(11Li) = H(9Li) +
3∑

i=1

Ti − TG +
2∑

i=1

Vcn,i + Vnn, (2)

where H(9Li), Ti and TG are the internal Hamiltonian of 9Li given by Eq. (1), the kinetic energies of each
cluster and the center-of-mass of the three-body system, respectively. The wave function of 11Li with the spin
J is given as

ΨJ(11Li) =
∑

i

A
{

[Φ3/2−

i , χj
i (nn)]J

}
, (3)

where j is the spin of the last two neutrons. We obtain coupled differential equations for the two neutron wave
functions χ by using the orthogonality condition model[6, 9] to treat the antisymmetrization in Eq. (2), which
provides the Pauli-blocking effect caused by the two neutrons. Here, we keep the length parameters bα of the
single particle wave functions as those obtained for 9Li. We describe the two neutron wave functions precisely in
a few-body approach of the hybrid-TV model[6, 9]. The radial part of the relative wave functions are expanded
with a finite number of Gaussian bases centered at the origin.

We shall fix now the interactions defined in Hamiltonians in Eqs. (1) and (2). We should first of all remind
that we take into account the tensor force in the shell model basis explicitly as the first time. On the other hand,
the short range repulsion has to be taken into account in the effective interaction, which is not yet available.
Hence, we have to construct carefully the interactions in the Hamiltonian. We base therefore on the effective
interaction GA′ for vij in Eq. (1), which has explicitly the tensor force applying the AV8′ realistic potential
from the G-matrix theory and the short range repulsion is treated in the Brueckner method[17, 18]. Then, we
have to adjust the central force to avoid the double counting due to the tensor force, which is done by changing
the second range of the central force by reducing the strength by 21.5% and increasing the range by 0.19 fm to
reproduce the observed binding energy and the matter radius of 9Li in the same manner of Refs. [14, 16].

The 9Li-n potential, Vcn, in Eq. (2) is given by folding the MHN interaction, which has only the central force
and used frequently for light nuclei [20, 21]. For the 9Li+n system, the folding potential produces the proper
energy splittings in the 10Li spectra [9], such as 1+–2+ for the p1/2-neutron, and 1−–2− for the s1/2-neutron
from the coupling between spins of the last neutron and 9Li(3/2−). Furthermore, considering the small one-
neutron-separation energy of 9Li, we improve the tail behavior of the potential by adding a phenomenological
Yukawa type potential to the original folding one[9]. Any state-dependence is not used in the 9Li-n potential,
such as a deep potential for the s-wave. We have to introduce one parameter, δ in the 9Li-n potential to
adjust the strength of the second range of the folding potential to avoid the double counting due to the explicit
treatment of the tensor force[9]. This parameter is determined to reproduce the two-neutron-separation energy
of 11Li as 0.31 MeV after working out the tensor and the pairing correlation effects. For the potential Vnn of
the last two neutrons in Eq. (2), we take an AV8′ potential.

In principle, we can work out a large space to include the full effect of the tensor force by taking 2p-2h
states with very high angular momenta[16]. In order to avoid large computational efforts without loss of the
physical importance in the result, we restrict the 2p-2h shell model states within the p-wave states for the
description of 9Li with the single Gaussian basis. We have studied that the superposition of the Gaussian bases
improves the description of the spatial shrinkage for the particle states caused by the tensor correlation[16].
Using this method, so-called the Gaussian expansion method (GEM)[19], the particle-hole excitations induced
by the tensor force increase and converges[16]. In the present study, we adopt the 50% enhanced tensor matrix
elements with a single Gaussian bases in order to simulate the GEM effect.

3 Results

We show first the results of 9Li. In Fig. 1, we display the energy surface of 9Li as functions of the length
parameters of two 0p orbits, where b0s is already optimized as 1.45 fm. There are two energy minima, (a) and
(b), which have almost a common b0p3/2 value of 1.7-1.8 fm, and small (0.85 fm) and large (1.8 fm) b0p1/2 values,
respectively. The properties of two minima are listed in Table 1 with the dominant 2p-2h configurations and
their probabilities. It is found that the minimum (a) shows a large tensor contribution, while the minimum (b)
does not. Among the 2p-2h configurations, the largest probabilities are given by (0s)−2

10 (0p1/2)210 for (a), similar
to the results in Ref. [14, 16], and (0p3/2)−2

01 (0p1/2)201, namely the 0p shell pairing correlation for (b). These
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Figure 1: Energy surface of 9Li with respect to the length parameters bα of 0p orbits. The two minima
indicated by (a) and (b) in the contour map correspond to the states due to the tensor correlation and the
paring correlation, respectively.

Table 1: Properties of 9Li with configuration mixing.

Present Expt.
(a) (b) (c)

E [MeV] −43.8 −37.3 −45.3 −45.3
〈VT 〉 [MeV] −22.6 −1.8 −20.7 —

Rm [fm] 2.30 2.32 2.31 2.32±0.02[22]
0p-0h 91.2 60.1 82.9 —

(0p3/2)−2
01 (0p1/2)201 0.03 37.1 9.0 —

(0s1/2)−2
10 (0p1/2)210 8.2 1.8 7.2 —

results indicate that the minima (a) and (b) represent the different correlations of tensor and pairing characters,
respectively. The spatial properties are also different from each other; the tensor correlation is optimized with
spatially shrunk excited nucleons for (a) and the pairing correlation is optimized when two 0p orbits make a
large spatial overlap for (b). In Table 1, we show the results of the superposition of minima (a) and (b), named
as (c), to obtain a 9Li wave function including the tensor and pairing correlations, simultaneously. For (c), the
favored two configurations in each minimum (a) and (b) are still mixed with the 0p-0h one, and the property of
the tensor correlation is kept in (c). The superposed 9Li wave function possesses both the tensor and pairing
correlations.

We discuss here the Pauli-blocking effect in 11Li as shown in Fig. 2. For the 9Li ground state (GS), in
addition to the 0p-0h state, 2p-2h states caused by the tensor and pairing correlations are strongly mixed
(upper panel). Let us add two neutrons more to 9Li. When two neutrons occupy the 0p1/2-orbit (middle
panel), the 2p-2h excitations of the tensor and pairing correlations in 9Li are Pauli-blocked, simultaneously[9].
Accordingly, the correlation energy of 9Li is partially lost inside 11Li. For the (1s)2 case of two neutrons (lower
panel) the Pauli-blocking does not occur and 9Li gains its correlation energy fully by the configuration mixing
with the 2p-2h excitations. Hence, the relative energy distance between (0p)2 and (1s)2 configurations of 11Li
is expected to become small to break the magicity in 11Li.

We perform the coupled three-body calculation of 11Li considering tensor and pairing correlations fully,
named as “Present”. In order to see the individual effects of the tensor and paring correlations, we consider
other three models of 11Li with different descriptions of 9Li. “Inert core” is only the 0p-0h configuration of
9Li. “Tensor” and “Pairing” are the ones in which the minimum (a) and (b) in Table 1 are adopted for 9Li,
respectively. For each model, we determine the parameter δ in the 9Li-n potential, shown in Table 2.

In Fig. 3, “Present” is found to give a large amount of the (1s)2 probability P (s2), 46.9% for the last two
neutrons and a large matter radius Rm, 3.41 fm for 11Li, which are enough to explain the observations. The
probabilities of (p1/2)2, (p3/2)2, (d5/2)2 and (d3/2)2 for the last two neutrons are obtained as 42.7%, 2.5%, 4.1%
and 1.9%, respectively. This model successfully reproduces −17.4 fm of a scattering length for the 2− state of
the 9Li+n system as a signature of a virtual s-state. In Fig. 3, when we individually consider the tensor and
pairing correlations for 9Li, P (s2) is larger for the tensor case than for the pairing case. This means that the
blocking effect from the tensor correlation is stronger than the pairing case. Finally their coupling moreover
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Figure 2: Schematic illustration for the Pauli-blocking
in 11Li. Details are described in the text.
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Figure 3: (1s)2 probability P (s2) and matter radius
Rm of 11Li with four models in comparison with the
experiments ((a)[3], (b)[22] and (c)[23]). The scale of
P (s2) (Rm) is right (left) hand side.

Table 2: δ and the energy differences ∆E in MeV.

Inert core Pairing Tensor Present
δ 0.066 0.143 0.1502 0.1745

∆E 2.1 1.4 0.5 −0.1

enhances P (s2) and provide the equal amount of (1s)2 and (0p)2 configurations. Hence, two correlations play
important roles to break the magicity and make the halo structure for 11Li.

In Table 2, we estimate the relative energy difference ∆E between (1s)2 and (0p)2 configurations for 11Li
using the mixing probabilities of these configurations and the coupling matrix element between them as 0.5
MeV obtained in Ref. [9]. The present model is found to give the degenerated energies enough to couple the
(0p)2 and (1s)2 configurations by the pairing interaction.

We calculate the three-body Coulomb breakup strength of 11Li into 9Li+n+n system to investigate the
properties of the dipole excited states and compare the strength with the new data from the RIKEN group[4].
We use the Green’s function method combining with the complex scaling method to calculate the three-body
breakup strength[24] using the dipole strength and the equivalent photon method, where energy resolution is
taken into account[4]. We cannot find any resonances with a sharp decay width enough to make a structure in
the strength. In Fig. 4, it is found that the present model well reproduces the experiment, in particular, for low
energy enhancement and its magnitude.

For the reference, we calculate the strength with a potential model denoted as DR, in which the 9Li core is
inert and the 9Li-n s-wave potential is deepened to reproduce 50% of P (s2) in the 11Li ground state. In this case,
we obtain three dipole resonances of 1/2+, 3/2+ and 5/2+ states with 3/2− ⊗ 1−, less than 0.5 MeV above the
three-body threshold energy, similar to the results of Ref. [8]. In our results, the 3/2+ state is located slightly
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Figure 4: Calculated Coulomb breakup cross section measured from the 9Li+n+n threshold energy.



lower than other two states, which make a visible splitting in the cross section before folding with experimental
resolution as shown in Fig. 4.

The charge radius of 11Li was measured recently and its value is 2.467±37 fm, which is enhanced from the
one of 9Li, 2.217±35 fm [5]. The present wave functions provide 2.44 fm and 2.23 fm, respectively, which are
in good agreement with the experimental values. This enhancement is mainly caused by the large distance
between 9Li and the paired two neutrons obtained as 5.69 fm.

4 Summary

We have considered newly the tensor correlation in 11Li based on the extended three-body model. We have
found that the tensor and pairing correlations play important roles in 9Li with different spatial characteristics,
where the tensor correlation prefers a shrunk spatial extension. The tensor and pairing correlations in 9Li inside
11Li are then Pauli-blocked by additional two neutrons and make the (1s)2 and (0p)2 configurations close to
each other and hence activate the pairing interaction to mix about equal amount of two configurations. As a
result we naturally explain the breaking of magicity and the halo formation for 11Li. We also reproduce the
recent results of the Coulomb breakup strength and the charge radius of 11Li.
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