Study of spin dipole strengths in ¹²N via ¹²C(\vec{p}, \vec{n}) reaction at 296 MeV and 0°

M. Dozono¹, T. Wakasa¹, E. Ihara¹, T. Noro¹, T. Ishida², S. Asaji¹, Y. Nagasue¹, H. Takeda¹,

Y. Yamada¹, K. Hatanaka³, Y. Sakemi², A. Tamii³, Y. Shimizu⁴, K. Fujita³,

Y. Tameshige³, H. Matsubara³ and T. Kaneda³

¹Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

 $^2\,Cyclotron$ and Radioisotope Center, Tohoku University, Miyagi 980-8578, Japan

³Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan

⁴Center for Nuclear Study, The university of Tokyo, Tokyo 133-0033, Japan

The charge exchange reaction at intermediate energies is one of the best probes to study spin-isospin excitations in nuclei, such as spin-dipole (SD) excitations characterized by $\Delta L = 1$, $\Delta S = 1$, and $\Delta J^{\pi} = 0^-$, 1^- , and 2^- . In previous (p, n) and (n, p) experiments on ¹²C [1, 2], spin-dipole resonances (SDRs) were found at $E_x \simeq 4$ and 7 MeV. Analysis of the angular distributions of the SDRs at $E_x \simeq 4$ and 7 MeV indicate

that they consist of mainly 2⁻ and 1⁻ components, respectively. However, recent ${}^{12}C(\vec{d}, {}^{2}He){}^{12}B$ and ${}^{12}C({}^{12}C, {}^{12}N){}^{12}B$ experiments [3, 4] suggested that the SDR at $E_x \simeq 7$ MeV in ${}^{12}B$ has more 2⁻ components than 1⁻ components. Theoretical calculations including tensor correlations [5] have also supported this suggestion.

We investigated SD strengths in ¹²N up to $E_x \simeq$ 10 MeV with complete polarization transfer measurements for ${}^{12}C(\vec{p},\vec{n})$ at 296 MeV and 0°. Figure 1 shows the experimental results for the unpolarized (I), spin-longitudinal $(ID_L \equiv ID_q)$, and spin-transverse $(ID_T \equiv ID_p + ID_n)$ cross sections. It is expected that 0^- and 1^- states appear only in the ID_L and ID_T spectra, respectively, while 2⁻ states appear in both spectra. Solid curves show the results of peak fitting where the peak positions and widths were taken from Ref. [2]. It should be noted that the 2^- state at $E_x \simeq 4$ MeV forms its peak in both ID_i spectra as expected. The SDR at $E_x \simeq 7$ MeV is reproduced with two peaks ($E_x = 6.4$ and 7.5 MeV), and these peaks appear prominently in both ID_i spectra. This result means that the SDR at $E_x \simeq 7$ MeV consists of mainly 2^- components and supports previous ${}^{12}C(\vec{d}, {}^{2}He){}^{12}B$ and ${}^{12}C({}^{12}C, {}^{12}N){}^{12}B$ experiments [3, 4]. A large difference is seen at $E_x = 8.4$ MeV between the ID_i spectra; a clear peak appears in the ID_L spectrum but dissapears in the ID_T spectrum. Therefore, we assigned the J^{π} of the state at 8.4 MeV to be 0⁻. The peaks at $E_x = 9.1$ and 10.2 MeV are seen only in ID_T spectrum, which shows the predominace of the 1^{-} strength in this energy region. The SD strength distributions obtained from the present data are consistent with the results of the theoretical calculations including tensor correlations [5].

References

- [1] X. Yang, et al., Phy. Rev. C 48 (1993) 1158.
- [2] B. D. Anderson, et al., Phys. Rev. C 54 (1996) 237.
- [3] H. Okamura, et al., Phys. Rev. C 66 (2002) 054602.
- [4] T. Ichihara, et al., Nucl. Phys. A 577 (1994) 93c.
- [5] T. Suzuki, et al., Nucl. Phys. A 637 (1998) 547.

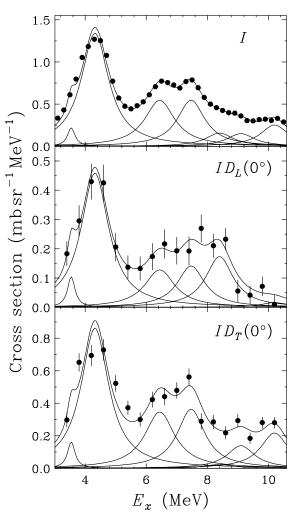


Figure 1: I (top), ID_L (middle), and ID_T (bottom) for the ${}^{12}C(\vec{p},\vec{n})$ reaction at 296 MeV and 0°.