Complete set of polarization transfer coefficients for the ${}^{3}\text{He}(p, n)$ reaction at 346 MeV

E. Ihara¹, T. Wakasa¹, M. Dozono¹, K. Hatanaka², T. Imamura¹, M. Kato², S. Kuroita¹, H. Matsubara²,

T. Noro¹, H. Okamura², K. Sagara¹, Y. Sakemi³, K. Sekiguchi⁴, K. Suda², T. Sueta¹, Y. Tameshige²,

A. Tamii², H. Tanabe¹, and Y. Yamada¹

¹Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

²Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

³Cyclotron and Radioisotope Center, Tohoku University, Miyagi 980-8578, Japan

⁴RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

We present the double-differential cross-section and a complete set of polarization transfer coefficients for the ${}^{3}\text{He}(p,n)3p$ reaction at $T_{p} = 346$ MeV and a reaction angle $\theta_{\text{lab}} = 0^{\circ}$. Polarization transfer coefficients are sensitive to the spin-parity J^{π} of an excited state [1], and thus they are sensitive to the presence of a resonance that has a fixed J^{π} .

Figure 1 shows the double-differential cross-section I and the complete set of polarization transfer coefficients $D_{NN}(0^{\circ})$ and $D_{LL}(0^{\circ})$ for the ³He(p, n) reaction at $T_p = 346$ MeV and $\theta_{lab} = 0^{\circ}$. The dashed curves in Fig. 1 represent the corresponding free NN values with the FA07 phase-shift solution [2] of the on-line Scattering Analysis Interactive Dial-in (SAID) Facility. The measured $D_{NN}(0^{\circ})$ values are close to the corresponding free NN values. This supports the predominance of quasi-elastic scattering processes in this reaction. However, significant discrepancies are observed in $D_{LL}(0^{\circ})$, which are presumably the result of the three-proton T = 3/2 resonance. The J^{π} value of the T = 3/2 resonance is estimated to be $1/2^{-}$ [3], and the solid curve in the top panel represents the $1/2^{-}$ resonance contribution. The present $D_{ii}(0^{\circ})$ data can be reproduced reasonably well by considering the $1/2^{-}$ resonance contributions as shown by the solid histograms in the lower two panels.

Figure 1: (a) The estimated $J^{\pi} = 1/2^{-} T = 3/2$ resonance cross-section (solid curve) compared with the total cross-section (filled circles) for the ³He(p, n) reaction at $T_p = 346$ MeV and $\theta_{\rm lab} = 0^{\circ}$. (b) The $D_{NN}(0^{\circ})$ values including the $J^{\pi} = 1/2^{-}$ resonance contributions (solid histogram) compared with the experimental data (filled circles). The dashed curve represents the corresponding free NN values with the FA07 phase-shift solution [2]. (c) Same as (b), but for $D_{LL}(0^{\circ})$.

References

- [1] J. M. Moss, Phys. Rev. C 26, 727 (1982).
- [2] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, Phys. Rev. C 76, 025209 (2007).
- [3] T. Wakasa, E. Ihara, M. Dozono *et al.*, arXiv:0802.2328.