Complete set of polarization transfer coefficients for the ${ }^{3} \mathrm{He}(p, n)$ reaction at 346 MeV

E. Ihara ${ }^{1}$, T. Wakasa ${ }^{1}$, M. Dozono ${ }^{1}$, K. Hatanaka ${ }^{2}$, T. Imamura ${ }^{1}$, M. Kato ${ }^{2}$, S. Kuroita ${ }^{1}$, H. Matsubara ${ }^{2}$, T. Noro 1, H. Okamura ${ }^{2}$, K. Sagara ${ }^{1}$, Y. Sakemi ${ }^{3}$, K. Sekiguchi ${ }^{4}$, K. Suda ${ }^{2}$, T. Sueta ${ }^{1}$, Y. Tameshige ${ }^{2}$, A. Tamii ${ }^{2}$, H. Tanabe ${ }^{1}$, and Y. Yamada ${ }^{1}$
${ }^{1}$ Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
${ }^{2}$ Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
${ }^{3}$ Cyclotron and Radioisotope Center, Tohoku University, Miyagi 980-8578, Japan
${ }^{4}$ RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

We present the double-differential cross-section and a complete set of polarization transfer coefficients for the ${ }^{3} \mathrm{He}(p, n) 3 p$ reaction at $T_{p}=346 \mathrm{MeV}$ and a reaction angle $\theta_{\text {lab }}=0^{\circ}$. Polarization transfer coefficients are sensitive to the spin-parity J^{π} of an excited state [1], and thus they are sensitive to the presence of a resonance that has a fixed J^{π}.

Figure 1 shows the double-differential cross-section I and the complete set of polarization transfer coefficients $D_{N N}\left(0^{\circ}\right)$ and $D_{L L}\left(0^{\circ}\right)$ for the ${ }^{3} \mathrm{He}(p, n)$ reaction at $T_{p}=346 \mathrm{MeV}$ and $\theta_{\text {lab }}=0^{\circ}$. The dashed curves in Fig. 1 represent the corresponding free $N N$ values with the FA07 phase-shift solution [2] of the on-line Scattering Analysis Interactive Dial-in (SAID) Facility. The measured $D_{N N}\left(0^{\circ}\right)$ values are close to the corresponding free $N N$ values. This supports the predominance of quasi-elastic scattering processes in this reaction. However, significant discrepancies are observed in $D_{L L}\left(0^{\circ}\right)$, which are presumably the result of the three-proton $T=3 / 2$ resonance. The J^{π} value of the $T=3 / 2$ resonance is estimated to be $1 / 2^{-}[3]$, and the solid curve in the top panel represents the $1 / 2^{-}$resonance distribution. The present $D_{i i}\left(0^{\circ}\right)$ data can be reproduced reasonably well by considering the $1 / 2^{-}$resonance contributions as shown by the solid histograms in the lower two panels.

Figure 1: (a) The estimated $J^{\pi}=1 / 2^{-} T=$ $3 / 2$ resonance cross-section (solid curve) compared with the total cross-section (filled circles) for the ${ }^{3} \mathrm{He}(p, n)$ reaction at $T_{p}=346$ MeV and $\theta_{\text {lab }}=0^{\circ}$. (b) The $D_{N N}\left(0^{\circ}\right)$ values including the $J^{\pi}=1 / 2^{-}$resonance contributions (solid histogram) compared with the experimental data (filled circles). The dashed curve represents the corresponding free $N N$ values with the FA07 phase-shift solution [2]. (c) Same as (b), but for $D_{L L}\left(0^{\circ}\right)$.

References

[1] J. M. Moss, Phys. Rev. C 26, 727 (1982).
[2] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, Phys. Rev. C 76, 025209 (2007).
[3] T. Wakasa, E. Ihara, M. Dozono et al., arXiv:0802.2328.

