(p, p') reactions on all even-even and N=Z nuclei of sd-shell region

H. Matsubara¹, A. Tamii¹, T. Adachi¹, J. Carter², M. Dozono³, H. Fujita², K. Fujita¹, Y. Fujita⁴, N. Fujita⁵,

K. Hatanaka¹, D. Ishikawa¹, M. Itoh⁶, M. Kato¹, T. Kawabata⁷, S. Kuroita³, H. Nakada⁸, K. Nakanishi⁷, P.

von Neumann-Cosel⁹, R. Neveling¹⁰, A. Nonaka⁵, H. Okamura¹, B. Ozel⁹, I. Poltoratska⁹, A. Richter⁹, B.

Rubio¹¹, H. Sakaguchi⁵, S. Sakaguchi⁷, Y. Sakemi⁶, Y. Sasamoto⁷, Y. Shimbara¹², Y. Shimizu⁷, F.D. Smit¹⁰,

K. Suda¹, Y. Tameshige¹, K. Tsukiyama¹³, R. Yamada¹², Y. Yamada³, M. Yosoi¹, and J. Zenihiro¹⁴

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa

³Department of Physics, Kyusyu University, Hiqashi, Fukuoka 812-8581, Japan

⁴Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

⁵Department of Applied Physics, Miyazaki University, Miyazaki 889-2192, Japan

⁶Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Miyagi 980-8578 Japan

⁷Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan

⁸Department of Physics, Chiba University, Chiba, Chiba 263-8522, Japan

⁹Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ¹⁰iThemba LABS, Somerset West 7129, South Africa

¹¹Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, É-46071 Valencia, Spain

¹²Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan

¹³Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

¹⁴Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan

The M1 quenching problem still has some unresolved subjects [1], while the quenching problem of 1^+ strengths has been revealed [2]. A comparison of M1 quenching factors between isoscalar and isovector of 1^+ is essential for the problem of M1. We measured all even-even and N=Z nuclei as well as stable except for ⁴He by (p, p') reactions because both of isoscalar and isovector of 1^+ resonances would be observed at the same time. Their nuclei are ¹⁶O, ²⁰Ne, ²⁴Mg, ³²S, ³⁶Ar, and ⁴⁰Ca, and we note that the data of ¹²C and ²⁸Si were already taken at RCNP. Details of the experiment and the data reduction is described in Ref. [3]. Some developments were performed to prepare targets for high energy resolution measurements at 0° [4]. Preliminary results of 0° spectra are shown in Fig. 1. Calibrations and analysis to deduce 1^+ strengths are now in progress.

Figure 1: Typical spectra of the present measurement at 0° with full-acceptance of the GR are shown. The hatched areas indicate instrumental background events. A size of a bump seen at $E_x = 7.5$ MeV depends on a beam transport condition. The spectra of ²⁰Ne and ³⁶Ar are contaminated from aramid windows [4].

References

- [1] H. Matsubara et al., RCNP annual report 2006, p. 13, unpublished.
- [2] M. Ichimura, H. Sakai and T. Wakasa, Prog. Part. Nucl. Phys. 56 446-531 (2006).
- [3] A. Tamii *et al.*, Nucl. Instr Meth. A, now submitting.
- [4] H. Matsubara *et al.*, in this Annual Report.