Alignment correlation term in β -ray angular distribution from spin aligned ¹³B

K. Matsuta¹, T. Nagatomo², M. Mihara¹, M. Fukuda¹, K. Minamisono³, D. Nishimura¹, J. Komurasaki¹,

R. Matsumiya¹, M. Takechi², D. Ishikawa⁴, H. Majumdar⁵, H. Okamura⁴ and T. Minamisono⁶

⁴RCNP, Osaka Univ., ⁵Saha Institute, ⁶Fukui Univ. of Technology

The alignment correlation term in β -ray angular distribution is one of the sensitive probes to test the *G*-parity conservation law in weak nucleon currents (V_{μ} , and A_{μ}), including 4 extra terms induced by the strong interaction.

$$V_{\mu} = i\overline{\psi}_{p}(f_{V}\gamma_{\mu} + f_{W}\sigma_{\mu\nu}\kappa^{\nu} + if_{S}\kappa_{\mu})\psi_{n} \tag{1}$$

$$A_{\mu} = i\psi_{p}\gamma_{5}(f_{A}\gamma_{\mu} + f_{T}\sigma_{\mu\nu}\kappa^{\nu} + if_{P}\kappa_{\mu})\psi_{n}$$

$$\tag{2}$$

Among these 4 induced terms, only the induced scalar f_S and the induced tensor f_T terms are *G*-parity violating terms. The alignment correlation term includes both of the weak magnetism term f_W and the *G*-parity violating induced tensor term f_T . In the present research, such alignment term has been observed for β rays from aligned ¹³B, precisely, in order to investigate f_T . The β^{\mp} -ray angular distribution from purely aligned unstable nuclei is described as,

$$W(\theta) \propto 1 + \left(\frac{B_2(E)}{B_0(E)}\right)_{\mp} \mathcal{A}\left(\frac{3\cos^2\theta - 1}{2}\right)$$
(3)

Here, θ , E and A are the emission angle, the total energy of β^{\mp} particles and the nuclear alignment, respectively. Hear, the alignment correlation terms $\{B_2(E)/B_0(E)\}_{\mp}$ are for the mirror β^{\mp} decay of ¹³B and ¹³O, respectively.

The experimental procedure is similar to the previous experiment [1]. The ¹³B nuclei were produced through the projectile fragmentation process in heavy ion collisions, bombarding 1-mm thick Be target with an enriched ¹⁵N beam at 64 A MeV. The ¹³B nuclei were separated from other reaction products, by a fragment separator installed in the EN course of RCNP. By selecting reaction angle of $(2.0 \pm 1.2)^{\circ}$ and fragment momentum $\Delta p/p$ = $(2 \pm 1)\%$, nuclear spin polarization as large as 11 % was obtained in ¹³B nuclei. The ¹³B nuclei were then slowed down by an energy degrader and stopped in a 0.5-mm thick TiO₂ single crystal placed under the strong magnetic field of 2.024 kOe to maintain the polarization. The crystalline c-axis was set parallel to the external field. Beta rays emitted from the stopped ¹³B and come through the hole of the magnet pole, were detected by two sets of counter telescopes. Typical β -ray counts were 140 cps for the primary ¹⁵N beam of 50 particle-nA. In the time spectrum, no contamination was seen and ¹³B beam was shown to be pure.

Figure 1: Alignment correlation term for ¹³B. Theoretical values are also shown.

Series of rf oscillating magnetic fields were applied in a certain sequence by an rf coil installed around the catcher crystal, to induce NMR/NQR for converting reaction polarization to the spin alignments of both signs. The nuclear polarization for each time step was monitored by the asymmetry in the β -ray counts, as a function of time. Positive and negative alignments were obtained at the time sections in the same beam cycle.

Comparing energy spectra for positive and negative alignments, the alignment correlation term B_2/B_0 was deduced, as is shown in Fig. 1, together with the theoretical prediction values for both ¹³B and ¹³O. When we assume linear dependence, the B_2/B_0 is expressed as αE , where α is the alignment correlation coefficient. From the linear fitting analysis, the coefficient is obtained as, $\alpha_- = +(0.05 \pm 0.02)\%$ /MeV. Comparing with the theoretical coefficient for ¹³B ($\alpha_- = +0.02 \%$ /MeV), a preliminary result for the induced tensor term is obtained as $2M f_T/f_A = -(0.8 \pm 0.5)$, assuming theoretical weak magnetism and axial charge matrices. This deviation from zero f_T value should not be taken so serious. For the more precise value, we are going to add more counting statistics.

References

[1] K. Minamisono *et al.* Phys. Rev. C **65**, 015501-1-17(2002).

¹Dpt. of Physics, Osaka Univ., ²RIKEN, ³NSCL, MSU,