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As the chiral symmetry of QCD is spontaneously broken, SU(Nf )L ⊗ SU(Nf )R → SU(Nf )V (Nf being
the number of flavors), the observed hadrons are classified by the residual symmetry group representations of
SU(Nf )V . The full chiral symmetry may then conveniently be represented by its non-linear realization and this
broken symmetry plays a dynamical role in the presence of the Nambu-Goldstone bosons and their interactions.

Yet, as pointed out by Weinberg [1], there are situations when it makes sense to consider algebraic aspects of
chiral symmetry, i.e. the chiral multiplets of hadrons. Such hadrons may be classified in linear representations
of the chiral symmetry group with some representations mixing. If hadrons belong to certain representations
of the chiral symmetry group, some physical properties such as the axial coupling constants are determined by
this symmetry. Therefore, the question as to what chiral representations, possibly with mixing, the hadrons
belong to is of fundamental interest [2].

Motivated by this argument, we perform a complete classification of baryon fields written as local products
(without derivatives) of three quarks according to chiral symmetry group SU(3)L ⊗ SU(3)R [3]. Technically,
the SU(3) algebra introduces more complications, which makes insight less at work. Hence, here we attempt
to explore a rather technical aspect which enables one to perform systematic classification. We derive general
transformation rules for baryon fields for the classification, while maximally utilizing the Fierz transformations
in order to implement the Pauli principle among the quarks.

We find that the three-quark fields take several different Lorentz group representations which put some
constraints on possible chiral representations. As explained in the above, since the present results reflect
essentially the Pauli principle, they can conveniently summarized as shown in Table 1 by using the permutation
symmetry properties. This table explains also the previous results for the case of isospin SU(2)L ×SU(2)R [4].
From this table we have explicitly shown that the role of the Pauli principle effective in separate sector of the
left and right handed fermions.

Table 1: Structure of allowed three-quark baryon fields.

Lorentz Spin
Young table
for Chiral Chiral SU(2) Chiral SU(3) Flavor

( 1
2 , 0) ⊕ (0, 1

2 ) 1/2
([21],−) ⊕ (−, [21])
([1], [11]) ⊕ ([11], [1]) (2, 1) ⊕ (1, 2)

(8, 1) ⊕ (1, 8)
(3, 3̄) ⊕ (3̄, 3)

8
1, 8

(1, 1/2) ⊕ (1/2, 1) 1/2, 3/2 ([2], [1]) ⊕ ([1], [2]) (3, 2) ⊕ (2, 3) (6, 3) ⊕ (3, 6) 8, 10
(3/2, 0) ⊕ (0, 3/2) 3/2 ([3],−) ⊕ (−, [3]) (4, 1) ⊕ (1, 4) (10, 1) ⊕ (1, 10) 10

In the present world with spontaneously breaking of chiral symmetry, states of pure chiral (axial) symmetry
representation do not occur, but in general they can mix in a state having a definite flavor symmetry. The
present result shows, three-quark structure accommodates only a few number of (or unique) representations, for
instance, for the spin 1/2 field of Dirac spinor, the allowed chiral representations are two having the structure
of Young tableaux ([21],−) and ([1],[11]), where − indicates singlet. The ([21],−) representation corresponds
respectively to (2, 1) and (8, 1) for SU(2) and SU(3), while ([1], [11]) to (2, 1) and (3, 6), respectively. They
have the same permutation symmetry structure as that of the Lorentz group. In this way, the Lorentz (spin)
and flavor structures are combined into the structure of total symmetry. We have also calculated axial coupling
constants as well as their F/D ratios. We find that they are determined by the chiral representation which is a
feature of the linear realization of chiral symmetry.
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