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Nowadays, the phase structure of QCD at non-zero temperature and finite chemical potential attracts
increasing attention [1]. The wide interest to the problem is motivated by intriguing chance to create a new
state of matter, the quark-gluon plasma, in extraordinary hot and dense environment, which is expected to be
formed in relativistic collisions of heavy nuclei. Some particular properties of the plasma such as viscosity [2]
indicate that in the zero approximation the Yang-Mills plasma at temperatures slightly above the critical
temperature Tc can be considered as an ideal liquid rather than an ideal gas.

In this report we show – following the suggestion of Ref. [3] and numerical results of Ref. [4] – that the degrees
of freedom associated with magnetic vortexlike gluonic configurations (called hereafter as “center vortices” [5])
make a strong contribution to thermodynamics of the gluon plasma immediately above the critical temperature.
These vortices are geometrically related to the Abelian monopoles forming monopole-vortex chain and nets. The
contribution of the monopoles to the plasma thermodynamics is reported elsewhere [4, 6].

In SU(2) lattice gauge theory the vortex position is determined by the Z2 gauge field Zl = signTrUl = ±1,
where Ul is the SU(2) link field. The lattice field–strength tensor of the Z2 gauge field, ZP =

∏
l∈∂P Zl, takes

the negative value ZP = −1 if the plaquette P is pierced by the vortex worldsheets ∗σµν(s) on the dual lattice,
and ZP = +1 otherwise. We calculate the contribution of vortices to the trace anomaly of the energy momentum
tensor, θ = ε− 3p, using lattice simulations. The anomaly is directly linked to the equation of state, p = p(ε).

The gluonic trace anomaly is θ ∝ 〈SP 〉T −〈SP 〉T=0, where the first term is the vacuum expectation value of
the plaquette action ST at finite temperature T calculated at N3

s×Nt lattice with Nt < Ns while the second term
corresponds to zero temperature (N4

s lattice). The separation of space-time into two subspaces (occupied and not
occupied by the vortices) leads to a natural splitting of the trace anomaly into that originating from the vortex
worldsheets, and the contribution coming from elsewhere: θ = θvort + θrest. In terms of the plaquette action
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Figure 1: The vortex contribution to the trace
anomaly, θ = ε− 3p, in SU(2) gauge theory.

〈SP 〉vort =
1

6N3
s ×Nt

〈
∑

P∈σ
SP 〉 =

1
2

(
〈SP 〉 − 〈S̃P 〉

)
,

〈SP 〉rest =
1

6N3
s ×Nt

〈
∑

P 6∈σ
SP 〉 =

1
2

(
〈SP 〉+ 〈S̃P 〉

)
,

The action S̃P [U ] = 1 − 1
2ZP TrUP with Ũl = ZlUl, can be

interpreted as the action of the system with “removed” vortices.
In Fig. 1 we show the both contributions to the trace

anomaly (we used from 100 to 800 configurations in the Max-
imal Center gauge [5] at 183 × 4 and 184 lattices). The contri-
bution from the vortex worldsheets is negative. The maximum
absolute value of the vortex contribution is about three times
larger than the pure–gluon contribution calculated numerically
in Ref. [7]. In our simulations the maximal contribution of the
magnetic vortices to the trace anomaly is achieved when the
vortices occupy on average only 5% of the space-time. The
negative contribution from the vortices is almost canceled by
the positive contribution from the rest (95%) of the space–time.
Our results provide a strong evidence that the vortex–monopole
chains/nets are thermodynamically relevant degrees of freedom in the Yang-Mills plasma.
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