Resonances of ${ }^{7} \mathrm{He}$ using the complex scaling method

T. Myo ${ }^{1}$, K. Kat \bar{o}^{2} and K. Ikeda ${ }^{3}$
${ }^{1}$ Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan,
${ }^{2}$ Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan,
${ }^{3}$ RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Development of the radioactive beam experiments provides us with much information of the unstable nuclei far from the stability. Recently, many experiments of ${ }^{7} \mathrm{He}$, the unbound nuclei, have been reported $[1,2,3,4,5,6]$. However, there are still found contradictions in the observed energy levels and the excited states are not settled for their spins and energies. The ${ }^{7} \mathrm{He}$ excited states are experimentally suggested to appear as two or three particle resonances above the ${ }^{4} \mathrm{He}+3 n$ threshold energy, because the subsystem ${ }^{6} \mathrm{He}$ is a Borromean nucleus and breaks up easily into ${ }^{4} \mathrm{He}+n+n$.

Theoretically, when we discuss the structures of the ${ }^{7} \mathrm{He}$ resonances, it is important to describe the manybody decay properties concerned with subsystems consistently, in which the subsystems also have their particular decay widths such as ${ }^{5} \mathrm{He}+2 n$ channels. This condition was not emphasized so far in the studies of ${ }^{7} \mathrm{He}$. The ${ }^{7}$ He resonant spectroscopy is desired to be investigated with the appropriate treatments of the decay properties concerned with ${ }^{5,6} \mathrm{He}$.

The purpose of this theoretical study is to carry out the resonance spectroscopy of ${ }^{7} \mathrm{He}$ with the simultaneous descriptions of ${ }^{5,6} \mathrm{He}$ imposing the accurate boundary conditions of many-body decays. Here, we employ the cluster orbital shell model of the four-body ${ }^{4} \mathrm{He}+n+n+n$ system under the orthogonality condition model, in which the open channel effects for the ${ }^{6} \mathrm{He}+n,{ }^{5} \mathrm{He}+2 n$ and ${ }^{4} \mathrm{He}+3 n$ decays are taken into account explicitly. We describe the many-body resonances under the correct boundary conditions for these decay channels using the complex scaling method. We employ the Hamiltonian, which reproduces the ${ }^{4} \mathrm{He}-n$ scattering data and the ${ }^{6}$ He energies, shown in Fig. 1[7].

As a result, we found five resonances of ${ }^{7} \mathrm{He}$ shown in Fig. 1, which are dominantly described by the p shell configurations and the small contributions come from the $s d$ shell. The ground and the $5 / 2^{-}$states are reproduced well, while the slight overbinding is seen for the ground state by 0.2 keV in comparison with the experiments. The $3 / 2_{2}^{-}$state is predicted very close to the $5 / 2^{-}$state in Fig. 2. The $1 / 2^{-}$state is also predicted as a four-body resonance with a low excitation energy having a relatively large decay width of around 2 MeV . We further investigate the spectroscopic factors (S factors) of the ${ }^{6} \mathrm{He}-n$ component for ${ }^{7} \mathrm{He}$ resonances [7], which are useful to understand the coupling between ${ }^{6} \mathrm{He}$ and the additional neutron in ${ }^{7} \mathrm{He}$. It is found that the ${ }^{6} \mathrm{He}\left(2_{1}^{+}\right)$ state contributes largely in the several states of ${ }^{7} \mathrm{He}$. For the ground state, the S factors of the ${ }^{6} \mathrm{He}\left(0_{1}^{+}\right)-n$ and ${ }^{6} \mathrm{He}\left(2_{1}^{+}\right)-n$ components are obtained as $0.75+i 0.10$ and $1.51-i 0.40$, respectively.

Figure 1: Energies and decay widths of the ${ }^{5,6,7} \mathrm{He}$ states measured from the ${ }^{4} \mathrm{He}+X n$ threshold ($X=$ $1,2,3)$.

Figure 2: Excitation spectra of ${ }^{7} \mathrm{He}$ in comparison with the experiments (a)[1], b)[2], c)[3], d)[4], e)[5], f) [6]).

References

[1] A. A. Korsheninnikov et al., Phys. Rev. Lett. 82, 3581 (1999).
[2] G. Bohlen et al., Phys. Rev. C64, 024312 (2001).
[3] M. Meister et al., Phys. Rev. Lett. 88, 102501 (2002).
[4] A. H. Wuosmaa et al., Phys. Rev. C 72, 061301 (2005).
[5] F. Skaza et al., Phys. Rev. C 73,044301 (2006).
[6] N. Ryezayeva et al., Phys. Lett. B639, 623 (2006).
[7] T. Myo, K. Katō and K. Ikeda, Phys. Rev. C76, 054309 (2007).

