Relativistic chiral mean field model with high-spin pion field for finite nuclei

Y. Ogawa, H. Toki, S. Tamenaga, and A. Haga

Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

We study the property of nuclear system in the same footing as hadron physics starting with the linear σ model by Gell-Mann and Levy. The pion field appears symmetrically with the σ meson in this Lagrangian. For this purpose, we have constructed a relativistic framework, charge and parity projected chiral mean field model (CPPCMF), which can describe many-body correlations from pion-exchange interaction explicitly and can be applied to heavier nuclei.[1]. Our framework is, however, still within the spherical pion field ansatz. In this ansatz, one particle and one hole states, $|p - h; JM\rangle$, couple to $J^{\pi} = 0^{-}$. We then improve our framework so as to make it easy to use higher partial wave states of pion field, which correspond to the states of $J^{\pi} = 1^+, 2^-, 3^+$, ... so on. Inclusion of these higher partial wave states of pion provides an effect on nuclear bulk property[2]. We have to confirm the validity of pion's role on the formation of jj-magic structure[1] in the case of taking full strength of pionic correlations. This is because the 2p-2h corrections play major role on the production of strong attraction even in the nuclear matter and lead to the saturation property[2].

We construct a nuclear ground state wave function besed on the relativistic mean field basis as follows,

$$|\Psi\rangle = a_0 |\Phi_0; 0\mathbf{p} - 0\mathbf{h}\rangle + \sum_{\alpha} a_{\alpha} |\Phi_{\alpha}; 2\mathbf{p} - 2\mathbf{h}\rangle, \tag{1}$$

where α represents the index of the 2p-2h channels and set a_{α} is decided by making the total energy, $E = \langle \Psi | \hat{H} | \Psi \rangle$, minimized. The matrix element of pion-exchange interaction between 0p-0h and 2p-2h, $\langle 2p - 2h | \hat{H}_{\pi} | 0p - 0h \rangle$, is calculated by referring to the method of Appendix C in Ref.[3]. The energy contribution from this matrix element is large, and therefore perturbative treatment is not suitable for this problem. Simultaneously, σ and ω meson field are obtained by solving the minimization condition, $\partial E / \partial \phi = 0$, where ϕ represents σ or ω . The pionic correlations affect σ and ω meson fields through the scalar and vector densities, respectively,

$$\langle \Psi | : \psi \Gamma \psi : | \Psi \rangle, \tag{2}$$

where Γ represents 1 or γ_0 for σ or ω meson, respectively. The variation with respect to a_{α} , σ , and ω meson field provides coupled equations. They are solved self-consistently.

We show the preliminary stages of our calculation for ⁴He with respect to J^{π} in Fig. 1. The momentumcutoff in the form factor is set to be 1 GeV. The pionic central part, $\vec{\sigma}_i \cdot \vec{\sigma}_j \vec{\tau}_i \cdot \vec{\tau}_j$, needs further the inclusion of the short range repulsion of the nuclear force[4].

Figure 1: Energy convergence of various components as function J^{π} for ⁴He.

References

- H. Toki, Y. Ogawa, S. Tamenaga, and A. Haga, Prog. in Part. and Nucl. Phys. 59, 209(2007);
 Y. Ogawa, H. Toki, S. Tamenaga, Phys. Rev. C76, 014305(2007).
- [2] N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A697, 255(2002).
- [3] E. Oset, H. Toki, and W. Weise, Phys. Rep. 83, 281(1982).
- [4] H. Feldmeier, T. Neff, R. Roth, and J. Schnack, Nucl. Phys. A632, 61(1998).