Production of polarized ³He with meta-stability exchange method

E. Ihara¹, T. Wakasa¹, M. Dozono¹, and Y. Sakemi²

¹Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

²Cyclotron and Radioisotope Center, Tohoku University, Miyagi 980-8578, Japan

Recent progress in the development of high intensity infrared ytterbium-doped fiber lasers enables us to produce highly polarized ³He nuclei by the meta-stability exchange method. We have investigated the relation between the relaxation time and the nuclear polarization in high pumping rate region [1].

The nuclear polarization of ³He can be obtained by measuring the circular polarization of an optical line at 668 nm $(3^1D_2 \rightarrow 2^1P_1)$. An isolation of 668 nm light is performed using a Thorlabs laserline filter FL670. The circular polarization of the isolated light is measured using a Thorlabs polarization analyzing system PAX5710VIS. Figure 1 shows the typical ³He nuclear polarization deduced from the circular polarization of 668 nm light as a function of time. The laser was tuned for the C_8 transition, and was irradiated from t = 30to 130 s with an RF discharge frequency of f = 8.3 MHz. The measurements were performed for several RF discharge intensities which resulted in 668 nm light powers of $-54 \sim -48$ dBm on the system. The nuclear polarization P reaches its saturation value with an effective laser power of ~ 400 mW on the cell, and it is insensitive to the applied RF frequencies. The time dependence of P is expressed [2] as $P_0[1 - \exp(-t/\tau)]$ where P_0 is the final polarization for $t \to \infty$ and τ is the effective pumping time constant, and the solid curves in Fig. 1 are the results of fitting. The effective pumping time τ was short as 1–6 s, which is an unique feature of the meta-stability exchange method. The maximum nuclear polarization of $P_0 = 72\%$ was obtained in -54dBm case. The relaxation of P after stopping the laser irradiation is expressed [2] as $P_0[\exp(-t/\tau_r)]$ where τ_r is the relaxation time, and the dashed curves in Fig. 1 are the results of fitting. Note that both τ and τ_r are functions of RF discharge intensity as seen in Fig. 1, and they are controlled by the applied RF power. The relaxation time τ_r was long as 3–19 s compared with the effective pumping time τ .

The relation between τ_r and P_0 for f = 9.6 MHz is shown in Fig. 2. The Caltech data [3] for a 0.3 Torr cell with f = 10 MHz are also represented in the large τ_r region. It is found that in the whole τ_r region, the C_8 transition is the better choice to obtain higher polarization P_0 . The nuclear polarization P_0 can be expressed [2] using τ_r as

$$P_0 = P_\infty \frac{1}{1 + \tau_p / \tau_r} ,$$
 (1)

where τ_p is the pumping time constant and P_{∞} is the maximum polarization for $\tau_r \to \infty$. The solid curves in Fig. 2 are the results of fitting with Eq. (1) with constant τ_p , which reproduce the measured data reasonably well.

Figure 1: Build-up and relaxation of nuclear polarization P as a function of time.

Figure 2: Nuclear polarization P_0 as a function of relaxation time τ_r for C_8 and C_9 transitions.

References

- [1] E. Ihara, T. Wakasa, M. Dozono, and Y. Sakemi, J. Phys. Soc. Jpn. 77, 025002 (2008).
- [2] P. J. Nacher and M. Leduc, J. Physique **46** (1985) 2057.
- [3] T. R. Gentile and R. D. McKeown, Phys. Rev. A 47 (1993) 456.