High-Spin States in 136La
Studied by Using 17N RI Beam Induced Fusion Reaction

H. Nishibata1, Y. Ito1, R. Leguilllon2, C. Petrache2,3, A. Odahara1, T. Shimoda1, K. Tajiri1, J. Takatsu1, N. Hamatani4, R. Yokoyama5, E. Ideguchi6, H. Watanabe6, Y. Wakabayashi6, K. Yoshinaga7, T. Suzuki4, S. Nishimura8, D. Beaumel9, G. Lehaut9, D. Guinet9, P. Desesquelles9, D. Curien10

1Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
2Department of Physics, University of Paris Sud XI, Orsay F-91406, France
3Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), Orsay F-91406, France
4Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
5Center for Nuclear Study (CNS), University of Tokyo, Wako, Saitama 351-0198, Japan
6RIKEN, Wako, Saitama 351-0198, Japan
7Tokyo University of Science, Nada, Chiba 278-8510, Japan
8Institut de Physique Nucleaire (IPN), Orsay F-91406, France
9Institut de Physique Nucleaire de Lyon (IPNL), Villeurbanne 69622, France
10Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg 67037, France

Mid-shell nuclei in transitional mass region show shape coexistence, shape evolution from spherical to prolate deformation as change of neutron number, and so on. Especially, in transitional odd-odd nuclei with $A \sim 130$, signature splitting, signature inversion, chiral band, and so on have been observed. These phenomena are interpreted to be caused by γ softness and triaxial deformation due to the effect of a proton $h_{11/2}$ particle and a neutron $h_{11/2}$ hole. To reveal these exotic nuclear structure, we have investigated isomers which are very sensitive to variation of nuclear shape and nuclear motion.

As the first step, the high-spin states in the odd-odd nucleus 136La have been populated in a fusion reaction of 124Sn(17N,5n), induced by a low-energy radioactive nuclear beam. The use of the RI beam based on γ-ray spectroscopy with a large efficiency Ge-detector array enables significantly high-S/N measurements of the isomers so far unobserved. Because of rather low intensity (2×10^5 pps) of the 17N beam, the beam particle could be detected by the PPAC detector one-by-one. This information helps us to reduce the background, and at the same time, serves as the time reference for the γ-rays emitted from the isomers. Detailed experimental procedures were reported in ref. [1].

Gamma-rays in 136La were categorized into two groups by gating on the time difference between the PPAC and the Ge detectors: “prompt” and “delayed” associated with the gates on ±50 nsec and 100-800 nsec, respectively. Then, a “prompt”-γ and “delayed”-γ coincidence matrix was obtained. Figures 1(a) and (b) show the total projection γ-ray spectra of the matrix to the “delayed” axis and that to the “prompt” axis, respectively. The fact that γ rays of 156, 281, 407, 425 and 585 keV can be seen in the “delayed”-γ spectrum, as shown in Fig. 1(a), indicates that we found a new isomer in 136La. Gamma rays above the isomer can be obtained, comparing the “delayed”-γ and “prompt”-γ spectra in Fig. 1(a) and (b), respectively. This new isomer was assigned to the state with spin of (14) at 2.3 MeV higher excitation energy above the known isomer with $T_{1/2} = 114$ nsec [2]. Constructed level scheme with new 9 transitions and 6 levels is shown in Fig. 2. By the analysis of time difference between γ rays above and below new isomer, half life was determined to be $T_{1/2} = 187(27)$ nsec. Low-spin states can be well explained by the weak coupling between valence and core with small γ collectivity. Detailed nuclear structure of 136La will be discussed in ref. [3].

References
[3] H. Nishibata et al., to be submitted.