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Nuclear superdeformation is a unique testing ground for the shell structure at large deformation. Recent
studies of nuclei in A ∼ 40 region elucidated superdeformed (SD) structures in the excited levels along the
N=Z line whose ground state is spherical. Accordingly, ’a new island’ of SD nuclei was found around A ∼ 40
region (i.e., 36,40Ar[1, 2], 40Ca[3], and 44Ti[4]). The systematical presence of these SD structures is qualitatively
understood by the SD shell gaps at N=Z=18, 20, and 22 appeared in the Woods-Saxon single-particle diagram
(see Fig.. 4 of ref. [3]). Another SD shell structure at N=Z=16 is predicted and the associated superdeformation
is predicted in 32S for a long time [5], but it has not yet been observed and remains as a great challenge. Cranked
Skyrme-Hartree-Fock calculations predict the SD structure in a range of sulfur isotopes [6]. 36S and adjacent
35S nuclei are candidates of SD nuclei. However, high-spin level structure of these isotopes are not well explored
and only low-lying levels near the ground state are studied.

In order to study high-spin level structure and to investigate collective structure in 35S, we have performed
an in-beam γ-ray spectroscopy experiment at the tandem accelerator facility of Institute de Physique Nucléaire
d’Orsay. High-spin sates of 35S were produced by the fusion-evaporation reaction, 26Mg(18O, 2α1n)35S at
an 18O beam energy of 75 and 80 MeV. Two stacked self-supporting foils of 26Mg enriched isotopes with
thickness of 0.5 mg/cm2 were used. Gamma rays were measured by the ORGAM Ge detector array comprised
of 13 EUROGAM type coaxial Ge detectors with the BGO Compton suppressor shield [7], in coincidence with
charged particles detected by the Si-Ball, a 4π array consisting of 11 ∆ E Si detectors [8]. After Doppler shift
correction and setting gate on 2 α particles detected by the Si-Ball, γ-ray energy spectrum was created as shown
in Fig. 1(a). By the charged particle gate, γ-ray peaks associated with 2 α events (34,35S) were enhanced. By
setting gate on the low-lying 1991 keV transition of 35S, γ−γ coincidence relations are examined. Further data
analysis is now in progress.
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Figure 1: (a) Gamma-ray spectrum by 2 α particle gate. (b) Gamma-ray spectrum gating on 1991 keV transition.
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