Study for Double Beta Decay of ⁴⁸Ca with CANDLES at Kamioka

S. Umehara¹, T. Kishimoto¹², M. Nomachi¹, S. Ajimura¹, N. Nakatani¹, K. Matsuoka¹, K. Ichimura¹,

M. Saka¹, T. Ishikawa¹, D. Tanaka¹, M. Tanaka¹, S. Yoshida², K. Suzuki², G. Ito², H. Kakubata², W. Wang²,

J. Takemoto², W. M. Chan², M. Doihara², Y. Tamagawa³, I. Ogawa³, T. Ueno³, S. Maeda³, A. Yamamoto³ S. Tomita³, G. Fujita³, A. Kawamura³, T. Harada³, K. Fushimi⁴, R. Hazama⁵, H.Ohsumi⁶, K. Okada⁷

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

³Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan

⁴Faculty of Integrated Arts and Science, The University of Tokushima, Tokushima 770-8502, Japan

⁵ Faculty of Human Environment, Osaka Sangyo University, Daito, Osaka 574-8530, Japan

⁶Faculty of Culture and Education, Saga University, Saga 840-8502, Japan

⁷Department of Computer Science and Engineering, Kyoto Sangyo University, Kyoto 603-8555, Japan

CANDLES is the project to search for neutrino-less double beta decay $(0\nu\beta\beta)$ of ⁴⁸Ca. Measurement of $0\nu\beta\beta$ provides a test for the Majorana nature of neutrinos and gives an absolute scale of the effective neutrino mass. We installed the CANDLES III system, which contained 350 g of ⁴⁸Ca, at the Kamioka underground observatory. In this system, the 96 CaF₂ scintillators are immersed in liquid scintillator.

In 2012 we improved the CANDLES III system for a high sensitive measurement. In the CANDLES III system, the photomultiplier tubes had small photo-coverage by the photomultiplier tubes. In order to increase the photo-coverage by the photomultiplier tubes, the light-concentration system was set between the photomultiplier tubes and the liquid scintillator vessel. The light-concentration system is shown in figure 1-a). We checked the performance of the light-concentration system by using a reference $CaF_2(pure)$, which has high radioactive contamination (U-chain : 60 mBq/kg). Figure 1-b) shows the energy spectra of the reference CaF_2 (pure) with/without the light-concentration system. The position of the α peak is risen from 2500 ch region to 4700 ch region. We found that the light collection efficiency with the light-concentration system is 1.9 times larger than the one without the light-concentration system. This corresponds to 0.9 p.e./keV in the number of photo-electron and satisfies a requirement for the CANDLES III system.

Now we continue the $0\nu\beta\beta$ measurement adding improvements for the system. The expected sensitivity of the CANDLES III system is 0.5 eV for neutrino mass.

References

- [1] T. Kishimoto et al, Proc. of 4th Int. Workshop on Neutrino Oscillations and their Origin (Kanazawa) (Singapore : World Scientific) (2003) pp 338-349.
- [2] S. Umehara et al, AIP Conf. Proc. 1235 (2010) 287.

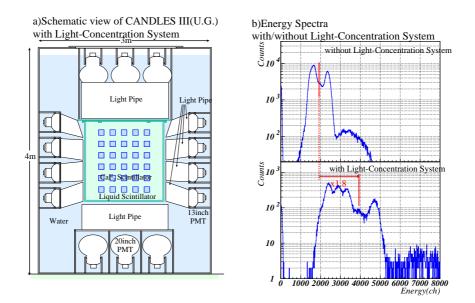


Figure 1: a) Schematic view of the CANDLES III system. The light-concentration system is set between the photomultiplier tubes and the liquid scintillator vessel. b)The energy spectrum without/with the lightconcentration system. The light collection efficiency with the light-concentration system is 1.9 times larger than the one without the light-concentration system.