Determination of ${}^{8}B(p,\gamma){}^{9}C$ reaction rate from ${}^{9}C$ breakup

T. Fukui¹, K. Ogata¹, K. Minomo², and M. Yahiro²

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

In low-metallicity supermassive stars, the proton capture reaction of ⁸B, ⁸B $(p,\gamma)^9$ C is expected to be important to synthesize the CNO elements. Because of the difficulties in measuring the ⁸B $(p,\gamma)^9$ C cross section $\sigma_{p\gamma}$ at very low energies, several alternative reactions have been proposed [1, 2, 3] to indirectly determine the astrophysical factor $S_{18}(\varepsilon)$, which is defined by $S_{18}(\varepsilon) = \sigma_{p\gamma}\varepsilon \exp[2\pi\eta]$ (ε ; the p-⁸B relative energy in the center-of-mass frame, η ; the Sommerfeld parameter). There is, however, a significant discrepancy of about 50% between the $S_{18}(0)$ obtained by the Coulomb dissociation method [3] and the ANC method [1, 2].

In this paper, we reinvestigate the Coulomb dissociation [3] (elastic breakup) and the proton removal process [2] of ⁹C by means of coupled-channel calculation with a three-body $(p + {}^{8}B + target)$ model. we use the ANC method [4] for both reactions. The main purpose of the present study is to show the consistency between the two values of $S_{18}(0)$ extracted from these two types of breakup, and thereby determine $S_{18}(0)$ with high reliability. The detail of our calculation is shown in the Ref. [5].

Target	$^{12}\mathrm{C}$		²⁷ Al	
	calc.	expt.	calc.	expt.
$\sigma_{-p} [mb]$	44.9	48(8)	53.9	55(11)
$S_{18}(0)$ [eVb]	65.2		62.2	

Figure 1: (left) Breakup spectrum of the 208 Pb(${}^{9}C, p^{8}B$) 208 Pb reaction at 65 MeV/nucleon. (right) Results of the one-proton removal reactions on ${}^{12}C$ and ${}^{27}Al$ targets.

First, we analyze the elastic breakup ${}^{208}\text{Pb}({}^{9}\text{C},p{}^{8}\text{B}){}^{208}\text{Pb}$ at 65 MeV/nucleon. In Fig. 1, we show the breakup cross section as a function of ε . We have included the experimental efficiency $e(\varepsilon)$ [6] and resolution Γ in the calculation. In order to determine $S_{18}(0)$ we fit the theoretical result (dashed line) to the experimental data [3], and the solid line is obtained. The renormalization factor is 1.10, which results in $S_{18}(0) = 67.3$ eVb.

Second, we analyze the one-proton removal reaction of ⁹C at 285 MeV/nucleon on ¹²C and ²⁷Al targets. The calculated cross section σ_{-p} is renormalized to fit the experimental value taken from Ref. [7], which determines $S_{18}(0)$. These values are summarized in the right panel of Fig. 1. One sees that the two results of $S_{18}(0)$, corresponding to ¹²C and ²⁷Al targets, agree well with each other. By taking an average of the two values, we obtain $S_{18}(0) = 63.7$ eVb.

We here remark that in our three-body coupled-channel analysis, the values of $S_{18}(0)$ extracted from two different breakup reactions, 67.3 eVb (elastic breakup) and 63.7 eVb (proton removal), show very good agreement. This indicates reliability of the present analysis and the result of $S_{18}(0)$. As a principal result of the present study, we obtain $S_{18}(0) = 66 \pm 10$ eVb. The detailed discussion concerned with the difference of the result between present and previous is given in Ref. [5].

References

- [1] D. Beaumel *et al.*, Phys. Lett. **B514**, 226 (2001).
- [2] L. Trache, F. Carstoiu, A. M. Mukhamedzhanov, and R. E. Tribble, Phys. Rev. C 66, 035801 (2002).
- [3] T. Motobayashi, Nucl. Phys. A718, 101c-108c (2003).
- [4] A. M. Mukhamedzhanov and N. K. Timofeyuk, Yad. Fiz. 51, 679 (1990) [Sov. J. Nucl. Phys. 51, 431 (1990)].
- [5] T. Fukui, K. Ogata, K. Minomo, and M. Yahiro, Phys. Rev. C 86, 022801(R) (2012).
- [6] T. Motobayashi, Private Communication (2011).
- [7] B. Blank et al., Nucl. Phys. A624, 242 (1997).