$K^*\Sigma$ photoproduction off the proton target with baryon resonances

S.H. Kim¹, S.i. Nam², A. Hosaka¹ and H.C. Kim³

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 130-722, Republic of Korea

³Department of Physics, Inha University, Incheon 402-751, Republic of Korea

We studied on the K^* photoproduction off the proton target, i.e. $\gamma p \to (K^{*0}\Sigma^+, K^{*+}\Sigma^0)$. There have been two experimental data from the TAPS collaboration at CBELSA [1] and the CLAS collaboration at Jefferson laboratory [2]. We employ the effective Lagrangian method at the tree-level Born approximation, including the N^* and Δ^* resonance contributions, such as $D_{13}(2080)$, $G_{17}(2190)$, $D_{15}(2200)$, $S_{31}(2150)$, $G_{37}(2200)$, and $F_{37}(2390)$. The relevant Feynman diagrams preserving the gauge invariance are given in Fig. 1, in which N, Δ , K, κ , Σ , and Σ^* indicate the nucleon, $\Delta(1232)$, K(496), $\kappa(800)$, $\Sigma(1190)$, and $\Sigma^*(1385)$, respectively.

Figure 1: Relevant Feynman diagrams for $\gamma p \to K^* \Sigma$.

The scattering amplitude can be written with the phenomenological form factors that satisfy the Ward-Takahashi identity and the form factors are defined generically as

$$F_{\text{common}} = F_p F_{\Sigma} - F_p - F_{\Sigma}, \qquad F_{\Phi} = \frac{\Lambda_{\Phi}^2 - M_{\Phi}^2}{\Lambda_{\Phi}^2 - p^2}, \qquad F_B = \frac{\Lambda_B^4}{\Lambda_B^4 + (p^2 - M_B^2)^2}, \tag{1}$$

where p, Λ_{Φ} and Λ_{B} stand for the momentum transfer, the cutoff masses for the meson-exchange and baryon-pole diagrams, respectively. For the details of the theoretical framework, readers can refer to [3].

The numerical results for the total cross sections are given in the left panel of Fig. 2 as functions of E_{γ} . The unpolarized production strengths for $K^{*0}\Sigma^+$ and $K^{*+}\Sigma^0$ photoproductions are negligibly affected by the resonance contributions. In other words, the total production rate is dominated by the Born diagrams such as the Δ -pole and t-channel exchanges, as far as we rely on the available experimental and theoretical information.

Figure 2: Total cross sections for $\gamma p \to K^{*0}\Sigma^+$ as functions of the photon energy E_{γ} in the left panel. The black circles denote the TAPS data [1], whereas the open squares represent the estimated values extracted from the CLAS data [2]. The Total cross sections for $\gamma p \to K^{*+}\Sigma^0$ are given in the right panel with the same notation.

References

- [1] M. Nanova et al. [CBELSA/TAPS Collaboration], Eur. Phys. J. A 35, 333 (2008).
- [2] I. Hleiqawi et al. [CLAS Collaboration], Phys. Rev. C 75, 042201 (2007).
- [3] Y. Oh and H. Kim, Phys. Rev. C 74, 015208 (2006).