Coulomb breakup reactions of ¹¹Li in the coupled-channel ${}^{9}Li + n + n$ model

Y. Kikuchi¹, T. Myo^{2,1}, K. Katō³ and K. Ikeda⁴

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan

³Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

⁴Nishina Center of Accelerator-Based Sciences, The Institute of Physical and Chemical Research (RIKEN),

Wako 351-0198, Japan

The ¹¹Li nucleus is known to have two-neutron halo structure owing to the breaking of the N = 8 magic number and the large *s*-wave mixing in the ground state. Those exotic structures observed in the ¹¹Li ground state can be reproduced nicely by using the coupled-channel ⁹Li + n + n model including the tensor and pairing correlations in the ⁹Li core [1]. It is interesting to examine the excitation mechanism of ¹¹Li in terms of the Coulomb breakup reactions, which is dominated by the *E*1 transition, into the ⁹Li + n + n states.

We show the Coulomb breakup cross section into the ${}^{9}\text{Li} + n + n$ final states in Fig. 1. It is found that the results shows good agreement with the experiment for shape and magnitude over whole energy region. The low-lying enhancement is confirmed at around 0.25 MeV.

To see the effect of the large s-wave mixing on the Coulomb breakup strength of ¹¹Li, we compare the E1 strength distributions assuming different wave functions of ¹¹Li, a case of the small $(s_{1/2})^2$ component as 21.0 % in the ground state. The distributions are shown in Fig. 2. The distribution with the small s-wave mixing shows a relatively small strength at the peak energy, the magnitude of which is about a half of the original one with a large s-wave mixing. The result indicates that the s-wave mixing in the ¹¹Li ground state plays a significant role in reproducing the low-lying enhancement in the breakup strength.

To clarify the effect of the excitation of the ⁹Li core on the *E*1 strength distribution of ¹¹Li, we also compare our coupled-channel calculation with that of the simple ⁹Li + n + n model assuming an inert ⁹Li core [3], which gives the small the $(s_{1/2})^2$ component as 20.6 %. In two kinds of results having small *s*-wave mixing, there exists the large difference of the strengths. This is due to the fact that about 15 % of the integrated strength in our calculation escapes to the highly excited ¹¹Li states having the excited components of the ⁹Li core. This result indicates the importance of the core-excitation in ¹¹Li not only for the ground state but also for the excited continuum states.

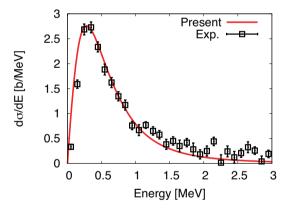


Figure 1: Coulomb breakup cross section of ¹¹Li, measured from the ⁹Li + n + n breakup threshold. The red (solid) line represents the calculated cross section. The experimental data are taken from Ref. [2], shown as open squares with error bars.

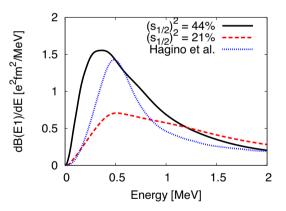


Figure 2: Comparison between the E1 strength distributions. The black (solid) line represents the result used in FIG. 1, and the red (dashed) one is the result using the wave function with $(s_{1/2})^2 = 21$ %. The blue (dotted) line is the result taken from Ref. [3].

References

- [1] Y. Kikuchi, T. Myo, K. Katō and K. Ikeda, Phys. Rev. C 87, 034606 (2013).
- [2] T. Nakamura, Nucl. Phys. A 788, 243c (2007).
- [3] K. Hagino, H. Sagawa, T. Nakamura and S. Shimoura, Phys. Rev. C 80, 031301 (2009).