Self-consistent microscopic description of neutron scattering by 16O based on the continuum
particle-vibration coupling method.

Kazuhiro Mizuyama and Kazuyuki Ogata
Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

Description of nucleon-nucleus (NA) elastic scattering based on the fundamental nucleon-nucleon (NN) interaction
is one of the most challenging subjects of nuclear reaction studies, and is crucial for exploration of unstable nuclei, for
which phenomenological optical potentials have not been established. In a recent paper [1], the microscopic continuum
PVC (cPVC) method has been proposed. The cPVC method is based on the self-consistent microscopic HF and the
continuum random-phase-approximation (RPA) [2] with the Skyrme effective interaction. In this framework, the microscopic
nucleon optical potential is characterized by the nucleon self-energy corresponding to specific energy E in the asymptotic
region of the $N + A$ system; E can be interpreted as the incident energy of the nucleon on the target nucleus A in the
optical model picture.

In the cPVC framework, the scattering wave function of neutron $\Psi_{\text{PVC}}(r, \sigma, k)$ from A, with the relative coordinate r, the
intrinsic coordinate σ due to the spin degrees of freedom, and the relative wave number k in the asymptotic region, is
described by the following Lippmann-Schwinger equation

\[
\Psi_{\text{PVC}}^{(t)}(r, \sigma, k) = \phi_F(r, \sigma, k) + \sum_{\sigma', \sigma''} \int dr' dr'' G^{(t)}(r, \sigma, r' \sigma'; E) [v(r' \sigma') \delta(r' - r'') \delta_{\sigma', \sigma''} + \Sigma(r' \sigma', r'' \sigma''; E)] \phi_F(r'' \sigma'', k),
\]

where ϕ_F denotes the neutron free wave and $v(r' \sigma')$ is the HF one-body mean-field potential. The PVC Green function
and the corresponding self-energy are denoted by $G^{(t)}(r, \sigma, r' \sigma'; E)$ and $\Sigma(r' \sigma', r'' \sigma''; E)$, which are given by Eqs. (6)
and (7) of Ref. [1], respectively. With this scattering wave function, one may evaluate the transition matrix (T matrix) in a
straightforward manner.

In Ref. [3], the microscopic description of neutron scattering by 16O below 30 MeV is carried out by means of the
cPVC method with the Skyrme NN effective interaction. In the present calculation, we adopt the Skyrme NN effective
interaction SkM*. For the cPVC calculation, as in Ref. [1], the orbital angular momentum cutoff for the unoccupied
continuum states is set at $l_{\text{cut}} = 7\hbar$, and we include RPA phonons associated with the multipoarities J^π
of $2^+, 3^+, 4^+$, and 5^-, up to 60 MeV of the RPA excitation energy. In Fig.1, we compare the result of the reaction
cross section $\sigma_N(E)$ (solid black curve) with the experimental data [4]. (The dependence of $\sigma_N(E)$ on the maximum
multipolarity J_{max} is also shown.)

It should be remarkable achievement that the cPVC method explains about 85% of the experimental data on
average for $\sigma_N(E)$ which described only though particle-vibration coupling effects, i.e., with no imaginary part of an
effective interaction.

Another remarkable feature of the cPVC result is the fragmentation of a single-particle resonant cross section. This
result in good correspondence with some peaks seen at low energy, $E \leq 20$ MeV, probably those due to the doorway
states. Because 2p-1h configurations due to the particle-vibration coupling are taken into account in the cPVC method.

References

[4] Data retrieved from the National Nuclear Data Center, Brookhaven National Laboratory Online Data Service,