Five-body resonances of ⁸C using the complex scaling method

T. Myo¹, Y. Kikuchi² and K. Katō³

¹General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan,

²Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan,

³Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.

Recently, the new experiment on ⁸C has been reported [1]. The ⁸C nucleus is known as an unbound system beyond the proton drip-line and decays into many-body channels of ${}^{7}B+p$, ${}^{6}Be+2p$, ${}^{5}Li+3p$ and ${}^{4}\text{He}+4p$. In this report, we present our recent study on the resonance spectroscopy of ⁸C. We employ the cluster-orbital shell model of the ${}^{4}\text{He}+p+p+p+p$ five-body system, and describe the many-body resonances under the correct boundary conditions by using the complex scaling method. We adopt the Hamiltonian, the nuclear part of which reproduces the ⁴He-n scattering data and the ⁶He energy[2, 3]. The mirror nucleus of ⁸C is ⁸He, which is known as a neutron skin nucleus. It is interesting to examine the mirror symmetry between the proton-rich ⁸C and the neutron-rich 8 He.

Figure 1: Energy levels of ⁵Li, ⁶Be, ⁷B and ⁸C measured from the energy of ⁴He. Small numbers are theoretical decay widths in units of MeV.

We show the level structures of ⁵Li, ⁶Be, ⁷B and ⁸C in Fig. 1. It is found that the present calculations agree with the observations and predict more energy levels. In Fig. 2, we compare the excitation energy spectra of proton-rich and neutron-rich sides. The good symmetry is confirmed between the corresponding nuclei. The differences of excitation energies for individual levels are less than 1 MeV.

We calculate the pair numbers of four valence protons in ⁸C, using the operator $\sum_{\alpha \leq \beta} A_{J^{\pi},S}^{\dagger}(\alpha\beta)A_{J^{\pi},S}(\alpha\beta)$. Here, α and β represent the proton single-particle orbits and $A_{J^{\pi},S}^{\dagger}(A_{J^{\pi},S})$ is the creation (annihilation) operator of a proton-pair with spin-parity J^{π} and the coupled intrinsic spin S. The total pair number is six for each state of ⁸C. This quantity helps us to understand the pair coupling behavior of four protons. Figure 3 shows the pair numbers for ⁸C ($0_{1,2}^{+}$). In the 0_1^+ state, the 2⁺ neutron pair is close to five and the 0⁺ pair is almost unity. This is obtained from a main configuration of $(p_{3/2})^4$ with the probability of 88% using CFP (1 and 5 for 0⁺ and 2⁺, respectively). The 0_2^+ state has almost two 0⁺ proton pairs in addition to the 2⁺ pairs. This is consistent with the $(p_{3/2})^2(p_{1/2})^2$ configuration with a probability of 93%; this configuration is decomposed into the pairs of 0⁺, 1⁺ and 2⁺ with occupations of 2, 1.5, and 2.5, respectively. It is found that in the 0_2^+ state, the spin-singlet and the spin-triplet components are equally mixed in the 0⁺ proton pair.

5 S=1 0^{-1}_{1} 4 S=0 $P(J^{\pi},S)$ 3 2 1 0 1^+ 3⁺ 2^{+} 2- 0^{+} 0 1 3 $J^{\pi}(2p)$

Figure 2: Excitation energy spectra of mirror nuclei.

Figure 3: Pair numbers of the $0^+_{1,2}$ states of ⁸C.

References

- [1] R. J. Charity *et al.*, Phys. Rev. C84, 014320 (2011).
- [2] T. Myo, Y. Kikuchi and K. Katō, Phys. Rev. C84, 064306 (2011).
- [3] T. Myo, Y. Kikuchi and K. Katō, Phys. Rev. C85, 034338 (2012).