Five-body resonances of ${ }^{8} \mathrm{C}$ using the complex scaling method

T. Myo ${ }^{1}$, Y. Kikuchi ${ }^{2}$ and K. Katō ${ }^{3}$
${ }^{1}$ General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan,
${ }^{2}$ Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan,
${ }^{3}$ Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.

Recently, the new experiment on ${ }^{8} \mathrm{C}$ has been reported [1]. The ${ }^{8} \mathrm{C}$ nucleus is known as an unbound system beyond the proton drip-line and decays into many-body channels of ${ }^{7} \mathrm{~B}+p,{ }^{6} \mathrm{Be}+2 p,{ }^{5} \mathrm{Li}+3 p$ and ${ }^{4} \mathrm{He}+4 p$. In this report, we present our recent study on the resonance spectroscopy of ${ }^{8} \mathrm{C}$. We employ the cluster-orbital shell model of the ${ }^{4} \mathrm{He}+p+p+p+p$ five-body system, and describe the many-body resonances under the correct boundary conditions by using the complex scaling method. We adopt the Hamiltonian, the nuclear part of which reproduces the ${ }^{4} \mathrm{He}-n$ scattering data and the ${ }^{6} \mathrm{He}$ energy $[2,3]$. The mirror nucleus of ${ }^{8} \mathrm{C}$ is ${ }^{8} \mathrm{He}$, which is known as a neutron skin nucleus. It is interesting to examine the mirror symmetry between the proton-rich ${ }^{8} \mathrm{C}$ and the neutron-rich ${ }^{8} \mathrm{He}$.

Figure 1: Energy levels of ${ }^{5} \mathrm{Li},{ }^{6} \mathrm{Be},{ }^{7} \mathrm{~B}$ and ${ }^{8} \mathrm{C}$ measured from the energy of ${ }^{4} \mathrm{He}$. Small numbers are theoretical decay widths in units of MeV .

We show the level structures of ${ }^{5} \mathrm{Li},{ }^{6} \mathrm{Be},{ }^{7} \mathrm{~B}$ and ${ }^{8} \mathrm{C}$ in Fig. 1. It is found that the present calculations agree with the observations and predict more energy levels. In Fig. 2, we compare the excitation energy spectra of proton-rich and neutron-rich sides. The good symmetry is confirmed between the corresponding nuclei. The differences of excitation energies for individual levels are less than 1 MeV .

We calculate the pair numbers of four valence protons in ${ }^{8} \mathrm{C}$, using the operator $\sum_{\alpha \leq \beta} A_{J^{\pi}, S}^{\dagger}(\alpha \beta) A_{J^{\pi}, S}(\alpha \beta)$. Here, α and β represent the proton single-particle orbits and $A_{J^{\pi}, S}^{\dagger}\left(A_{J^{\pi}, S}\right)$ is the creation (annihilation) operator of a proton-pair with spin-parity J^{π} and the coupled intrinsic spin S. The total pair number is six for each state of ${ }^{8} \mathrm{C}$. This quantity helps us to understand the pair coupling behavior of four protons. Figure 3 shows the pair numbers for ${ }^{8} \mathrm{C}\left(0_{1,2}^{+}\right)$. In the 0_{1}^{+}state, the 2^{+}neutron pair is close to five and the 0^{+}pair is almost unity. This is obtained from a main configuration of $\left(p_{3 / 2}\right)^{4}$ with the probability of 88% using CFP (1 and 5 for 0^{+}and 2^{+}, respectively). The 0_{2}^{+}state has almost two 0^{+}proton pairs in addition to the 2^{+}pairs. This is consistent with the $\left(p_{3 / 2}\right)^{2}\left(p_{1 / 2}\right)^{2}$ configuration with a probability of 93%; this configuration is decomposed into the pairs of $0^{+}, 1^{+}$and 2^{+}with occupations of $2,1.5$, and 2.5 , respectively. It is found that in the 0_{2}^{+}state, the spin-singlet and the spin-triplet components are equally mixed in the 0^{+}proton pair.

Figure 2: Excitation energy spectra of mirror nuclei.

Figure 3: Pair numbers of the $0_{1,2}^{+}$states of ${ }^{8} \mathrm{C}$.

References

[1] R. J. Charity et al., Phys. Rev. C84, 014320 (2011).
[2] T. Myo, Y. Kikuchi and K. Katō, Phys. Rev. C84, 064306 (2011).
[3] T. Myo, Y. Kikuchi and K. Katō, Phys. Rev. C85, 034338 (2012).

