Feasibility studies towards future self-sufficient supply of the ⁹⁹Mo-^{99m}Tc isotopes with Japanese accelerators

In order to establish a self-sufficient supply of the ⁹⁹Mo-^{99m}Tc isotopes, we carried out a series of experiments at RCNP to explore possibilities. The ^{99m}Tc isotope is indispensable for medical diagnosis. It has so far been generated through decay of its parent isotope ⁹⁹Mo separated from fission products available only fom a limited number of nuclear reactors using highly enriched ²³⁵U (HEU). In Japan, since we do not have the HEU reactor, ⁹⁹Mo had to be supplied totally from abroad. However, it is a major worldwide concern that the HEU reactor is difficult to build successor(s)

Using proton beams with energies from 20 to 400 MeV from the RCNP AVF- and Ring- cyclotron complex we explored alternative ways to produce the isotopes with existing Japanese accelerators. Through the experiments we got two possible solutions : (http://jlc.jst.go.jp/DN/JST.JSTAGE/pjab/90.413)

First, we studied possibility to use spallation neutrons generated from J-PARC, the world top class high intensity proton accelerator, for production of ⁹⁹Mo through the ¹⁰⁰Mo(n,2n)⁹⁹Mo reaction. Based on RCNP simulation data we were able to estimate the yield for the case using 400 MeV x 330 μ A proton beam from the injector LINAC to be ⁹⁹Mo to be 1,500T Bq/year. This is much more than present Japanese yearly consumpution, 350 TBq/year.

Second possibility is to produce 99m Tc directly through 99 Mo(p, 2n) 99m Tc reaction using the PET cyclotrons which are in operation at various locations more than 50. PET cyclotrons deliver $100 \,\mu$ A proton beam of $15 \sim 20$ MeV. Through simulation experiment with lower intensity of 50 na on natural Mo target, we were able to estimate the yield of 99m Tc to be 350 GBq(EOB) in case of 10 hour bombaradment of $100 \,\mu$ A proton beam on enriched 99 Mo target. This amount of yield is sufficient to use in local university hospitals. In this case, however, we learned that the target must be highly enrichrd 100 Mo, at least 99%. Then, we designed a new target-system which would allow multiple use of the expensive enriched 100 Mo.