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1 Introduction

Recently, some significant results have been reported by
a research group [1, 2]. They claim that they create mag-
netic monopoles and observe them in a condensed mat-
ter system. They have discovered an evidence that the
magnetic monopoles can exist in the real nature for the
first time, since Paul A. M. Dirac predicted the magnetic
monopole in the quantum theory in 1931 [3]. Further-
more, an interesting experiment at the Large Hadron Col-
lider (LHC) was approved in 2010. The name of the
experiment is the Monopole and Exotics Detector at the
LHC (MoEDAL) experiment. One purpose of the experi-
ment is to search ”the massive magnetically charged par-
ticles as the magnetic monopole or the dyon1”.

Also in the strong interaction physics of Quantum chro-
modynamics (QCD), the monopole has been considered,
where it is expected to play a unique role in explain-
ing the mechanism of color confinement. As explained
in detail below, the condensation of monopoles may ex-
plain the confinement of the color flux just as the dual
version of the ordinary superconductor where the electric
charge of the Cooper pair condensates and magnetic flux
is excluded. Our purpose of this research is to examine
the interactions between monopoles, quarks, and gluons.
We add monopoles by the monopole creation operator
to the vacuum of QCD [4], and compute the observable
quantities in experiments, using the supercomputer SX-
ACE [Fig. 1]. This is primarily to clarify the mechanism
of color confinement of QCD. In the future, we would
like to further extend our research to the observation of
monopoles and the evaluation of monopole effects in the
NICA.

Quarks are the fundamental particles that interact by
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2The photo is taken from the NEC web page:
\http://jpn.nec.com/hpc/sxace/

Figure 1: The supercomputer SX-ACE2.

the strong force in the elementary particle physics. The
gluons mediate the strong interaction between quarks.
The strong force becomes weak in the high energy (short
distance) region, and becomes strong in the low energy
(long distance) region. This property of the strong force is
called the asymptotic freedom (and infrared slavery), and
is the important feature of QCD. In the high energy re-
gion, theoretical predictions by perturbative calculations
reproduces nicely many experimental results. In the low
energy region, however, we can not perform perturbative
calculations. Therefore, methods of non-perturbative cal-
culations are needed, which can be performed numeri-
cally by the first principle calculation using the supercom-
puters. That is the Lattice QCD. To study QCD in the low
energy region, the supercomputer is one of the most im-
portant tools.

The low energy dynamics of the strongly interacting
matter is also the issue of experimental studies. As one of
recent projects, we would like to note a new Nuclotron-
based Ion Collider fAcility (NICA) for the investigation
of the phase structures of the quark matter at the Joint
Institute for Nuclear Research (JINR, Dubna, Russia)3.
The experiment is scheduled to start in 2018. The aim
of the experiment is to study the hot and dense nuclear
matter, the phase transition of the quark-gluon plasma

3http://nica.jinr.ru/
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(QGP), and the restoration of the chiral symmetry at the
high baryon densities in heavy-ion collisions. These phe-
nomenological issue are expected to be eventually related
to the problems that we discuss in this report.

In the modern physics, the quark confinement is one
of the biggest unsolved problems. An isolated quark has
never been observed in experiments. The reason why the
quarks are confined in mesons and baryons and can not
be isolated, has not been shown yet. However, an impor-
tant idea has been proposed by ’t Hooft and Mandelstam.
They explained the mechanism of the quark confinement
in the maximal Abelian gauge in a beautiful manner [5, 6].
However, the Abelian monopole in the maximal Abelian
gauge is the gauge-dependent quantity. Thus several at-
tempts for the gauge-independent monopoles have been
worked out in quenched SU(2) [7, 8]. The definition
of the gauge-independent monopole has been also stud-
ied [9, 10].

In QCD, monopoles are non-perturbative object of the
gluon field. It is know also that there is another non-
perturbative object which is called the instanton. It is
the non-trivial solution in the four-dimensional space-
time, while the monopole is the three-dimensional one.
The physics of instants is primarily related to sponta-
neous breaking of chiral symmetry [11, 12]. Because both
monopoles and instantons are non-trivial objects of the
gluon field of QCD, their relations have been discussed,
though the detailed relations is not yet clear.

In our research, we focus on monopoles in QCD.
We add the Abelian monopole and anti-monopole in the
SU(3) non-Abelian gauge theory to the QCD vacuum by
the monopole creation operator [4]. The monopole and
the creation operator are studied by the Pisa group [4, 13,
14]. The Overlap fermion preserves the chiral symmetry
in the lattice gauge theory [15, 16, 17]. Therefore, we
examine the relation between the added monopoles and
instantons in the QCD vacuum using the Overlap fermion
as a probe, and show the relations between the monopoles
and the chiral symmetry breaking.

We have already confirmed that the additional
monopoles and anti-monopoles become the coherent
state, and form the long loops in the QCD vacuum.
We have quantitatively demonstrated that the additional
monopoles and anti-monopoles create the instantons
by comparing numerical results with analytical predic-
tions [18]. We have shown that the chiral condensate (de-
fined as a minus value) that is an order parameter for the
spontaneous breakdown of the chiral symmetry, decreases
by increasing the values of the monopole charges [19].
Moreover, the preliminary results have shown that the
quark masses become slightly heavy by increasing of the
values of the monopole charges [20]. These results sug-
gest a dynamics of the QCD vacuum; that is, the addi-

tional monopoles and anti-monopoles become the coher-
ent state in the QCD vacuum, furthermore, the monopoles
create instantons and may induce the chiral symmetry
breaking.

In a recent study, we check the effects of the finite lat-
tice volume and the discretization on these results, using
QCD vacuums of larger lattice volumes and the different
parameters of the lattice spacing. Finally, we want to re-
veal the dynamics that monopoles would induce the chiral
symmetry breaking, using the supercomputer SX.

In this article, we show an outline of achieved results in
2015 by the supercomputer SX-series.

2 Supercomputer SX-series

We have carried out numerical simulations since 2012,
using the supercomputer SX-series at the Research Center
for Nuclear Physics (RCNP) and the Cybermedia Center
(CMC) at the University of Osaka in Japan.

Table 1: The number of cores Ncore, computing perfor-
mance (Perf.), and memory size (Mem.) per node. Nnode
indicates the number of nodes at CMC5.

Series Ncore/node Perf./node Mem./node Nnode
[GFLOPS] [GB]

SX-8R 8 256 - 282 64 - 256 20
SX-9 16 1600 1000 10
SX-ACE 4 276 64 1536

The supercomputer SX-series is produced by the NEC
corporation (Japan), and possesses the ”vector processors
(array processors)”. The Earth Simulator at the Japan
Agency for Marine-Earth Science and Technology is one
of the largest vector supercomputer systems in Japan.
The vector supercomputers composed of the SX-ACE are
highly parallelized, and used for the researches about the
climate change and the earthquake6.

The supercomputer SX-ACE has been used at the CMC
since 2014. The information of the computing perfor-
mance and memory size per node of the supercomputer
SX-series at CMC are given in Table 1. The features of
the SX-series are as follows:

• One node has a large shared memory.

• The computational speed is fast without making spe-
cially optimized parallel programs.

• The compiler of the SUPER-UX system automati-
cally transforms original programs into highly opti-
mized programs.

5http://www.hpc.cmc.osaka-u.ac.jp/en/category/

system intro-en/
6http://www.jamstec.go.jp/es/en/index.html



Table 3: Comparisons of the computational time (CPU time) for the Hermitian Wilson Dirac operator TWi, the Overlap
Dirac operator TOv, and the total of the computational time Ttotal . The values are average values computed from the
numbers of samples Ncon f . The vectorization ratio of the computer programs for the SX-series is 99.9%.

V Computer Ncore Mem. [GB] TWi [h] TOv [h] Ttotal [h] Neigen Ncon f

164 PC cluster 1 3.5 67(5) 112(5) 186(5) 80 10
SX-8R 1 13.6 2.5(2) 18.8(5) 21.5(5) 80 10
SX-9 1 13.7 1.78(12) 8.5(3) 10.5(3) 80 10

SX-ACE 1 9.9 0.86(7) 6.7(4) 7.6(4) 80 5

184 SX-8R 1 20.9 1.89(15) 23(2) 25(2) 80 10
SX-9 1 20.1 1.01(5) 9.0(3) 10.2(3) 80 10

SX-ACE 1 15.7 0.74(16) 7.3(4) 8.2(5) 80 5

Table 2: The computational time (real time) Tcomp. for
eigenvalue problems. The values are mean values com-
puted from the numbers of configurations (statistical sam-
ples) Ncon f . V indicates the lattice volume. Ncore stands
for the number of cores. Neigen stands for the numbers of
eigenvalues and eigenvectors in each configuration.

V Computer Ncore Tcomp. [h] Neigen Ncon f

164 SX-8R 1 19.8(6) 80 10
4 13.6(6) 80 10

SX-ACE 1 7.8(4) 80 5
4 4.5(2) 80 5

184 SX-8R 1 22.1(5) 80 10
4 11.3(4) 80 10

SX-ACE 1 8.4(4) 80 7
4 3.9(2) 80 5

We optimize computer programs for the supercomputer
SX. The vectorization ratios of the computer programs are
99.7% ∼ 99.9%. The comparisons of the computational
time for the eigenvalue problems used one or four cores
of the SX-8R or the SX-ACE are given in Table 2. The
computational time of the SX-ACE becomes about one-
third comparing with the SX-8R.

3 The Dirac operators

The chiral symmetry refers to the invariance of La-
grangian by the chiral transformation. In the lattice gauge
theory, the Dirac operator satisfying the Ginsparg-Wilson
relation preserves the chiral symmetry. That is the mass-
less Dirac operator DOv of the Overlap fermion. The
Overlap fermion is the formulation of quarks in the lat-
tice gauge theory, that preserves the chiral symmetry. The
massless Overlap Dirac operator is composed of the Her-

mitian Wilson Dirac operator HWi. These operators are
defined in Refs. [15, 16, 17, 21].

First, we generate the QCD vacuum in the quenched
SU(3) by the standard Monte Carlo method, and compute
the eigenvalues and eigenvectors from the QCD vacuum
by solving the eigenvalue problems of the operators HWi

and DOv (D) as follows:

D | ψ〉 = λ | ψ〉 (1)
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Figure 2: The spectra of the eigenvalues of the Hermitian
Wilson Dirac operator λHW (left panel) and the Overlap
Dirac operator λOv (right panel). The number of eigenval-
ues Neigen is 250. The eigenvalues are computed from one
configuration. There is one zero mode in the spectrum of
λOv.

The eigenvalues of the Hermitian Wilson Dirac oper-
ator λHW are on the pure imaginary axis, whereas the
pairs of eigenvalues of the massless Overlap Dirac op-
erator ±λOv are distributed on the circle centered at (1.4,



0) on the complex plane as shown in Fig. 2. The fermion
zero modes can be found in the spectra of the eigenval-
ues of the massless Overlap Dirac operator, and the zero
modes are fundamentally related to the chiral symmetry
and spontaneous breakdown of the symmetry [21, 22].

To solve the eigenvalue problems, the optimized sub-
routines of ARPACK for the supercomputer SX in the
mathematical library (MathKeisan) are used, and pairs of
the eigenvalues and eigenvectors of the massless Overlap
Dirac operator are saved. We used about 360,000 node
hours for the computational time in 2015, and save about
100 terabytes in data storage areas. Almost all computa-
tional times are spent to find solutions of the eigenvalue
problems of the massless Overlap Dirac operator.

The comparisons of the computational time for the
Dirac operators HWi and DOv are given in Table 3. The
total of the computational time Ttotal of the SX-ACE is
about 1

25 comparing with the PC cluster at the RCNP.

4 Instantons

The Atiyah-Singer index theorem suggests that the num-
ber of instantons can be computed from the number of
fermion zero modes. However, we never simultaneously
observed zero modes of the plus chirality n+ and the mi-
nus chirality n− from the same QCD vacuum. We as-
sume that the physical lattice volumes of our system are
too small to detect separately the plus or minus chiral-
ities of the zero modes. Similar results are reported in
Ref. [23]. We suppose that the observed zero modes Nobs
are topological charges Q = n+ − n−, and the number of
instantons Ni in our system is computed as follows:

Ni = 〈Q2〉 = 〈N2
obs〉 (2)
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Figure 3: The number of instantons Ni (〈Q2〉) vs. the
physical volume V/r4

0.

In order to show whether our supposition is correct, we
fit a linear function Ni = A ·V/r4

0 +B to twenty-two points

as shown in Fig. 3, and evaluate the instantons density ρi

from the slope A. The fitted results are A = 6.62(15)×
10−2, B = 2(10)× 10−2, χ2/n.o. f . = 20.4/20.0. The
intersect B is 0, and χ2/n.o. f . is 1.0. That is, as the in-
stanton liquid model predicts, the number of instantons is
in direct proportion to the physical volume. The instanton
density is

ρi = 8.04(18)×10−4 [GeV−4], (r0 = 0.5 [fm]). (3)

This value is exactly consistent with the prediction of the
instanton liquid model [11]. These results denote that
the number of instantons in the QCD vacuum is properly
computed.

5 Instantons and monopoles

In this study, we create the Abelian monopoles in the
SU(3) non-Abelian gauge theory by using the monopole
creation operator [4]. The monopole fields are described
in the Wu-Yang form [24]. The disorder parameter for
the dual superconductivity of the QCD vacuum is de-
fined from the monopole creation operator. The def-
inition of the monopole, and the technique to create
monopoles in the QCD vacuum has been studied by the
Pisa group [4, 13, 14].

We generate QCD vacuums adding one pair of a
monopole and an anti-monopole, varying the magnetic
charges mc by the monopole creation operator. The
monopole has the positive magnetic charges and the anti-
monopole has the negative magnetic charges. The total of
magnetic charges is set to be zero. The magnetic charge
mc indicates that both the monopole of plus charges +mc

and the anti-monopole of minus charges −mc are added.
The magnetic charge mc = 0 represents that monopoles
are not added; the numerical results of mc = 0 should be
consistent with numerical results of the normal QCD vac-
uum. The details of the monopole creation operator and
the monopoles are explained in Ref. [18].

First, in the maximal Abelian gauge we have confirmed
that the monopole density increases and the length of
monopole loops becomes longer by increasing the val-
ues of magnetic charges mc. That is, the condensation
of monopoles and anti-monopoles becomes the coherent
state in the QCD vacuum.

Next, we solve eigenvalue problems of the massless
Overlap Dirac operator, and compute the number of in-
stantons from the number of fermion zero modes. In cal-
culations, we do not perform the processes of smearing,
cooling, or gauge fixing to the QCD vacuum. We find
the quantitative relation between the number of monopole
charges mc and the number of instantons Ni by comparing
with our prediction. We can not observe the zero modes
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Figure 4: The number of instantons Ni (〈Q2〉) vs. the
value of the monopole charges mc.

of n+ and n− in the same QCD vacuum, therefore, we
make a hypothesis; one monopole of +1 magnetic charge
and one anti-monopole of −1 magnetic charge would cre-
ate one instanton of +1 or −1 charge. The instantons of
positive charges and negative charges would be equally
created for the CP invariance.

To confirm the hypothesis, we compare results that are
computed from the analytical prediction with numerical
results, by fitting a linear function Ni = A · mc + B as
shown in Fig. 4. If the slope A would be one, numeri-
cal results are consistent with our hypothesis. The fitted
results are A = 1.06(11), B = 5.9(2), χ2 = 9.1/3.0. The
value of the slope A is consistent with our hypothesis; one
monopole of +1 magnetic charge and one anti-monopole
of −1 magnetic charge create one instanton of +1 or −1
charge.

6 Chiral symmetry breaking and
monopoles

A large number of theoretical and numerical results show
that the monopole condensation is responsible for the
quark confinement. Nevertheless, the relation between
monopoles and the chiral symmetry breaking has not
been clear yet, because the most common formulation of
quarks (Wilson fermions) in the lattice gauge theory does
not preserve the chiral symmetry.

In order to explain quantitatively the relation between
the monopoles and the breakdown of the chiral symme-
try, first, we evaluate the chiral (quark) condensate 〈ψ̄ψ〉
numerically from the eigenvalues of the massless Overlap
Dirac operator [25, 26, 27]. The chiral condensate is the
order parameter for the chiral symmetry and the sponta-
neous breakdown of the symmetry.

• If the chiral symmetry is unbroken, the chiral con-
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Figure 5: The square of the pseudo-scalar mass (mpsr0)2

vs. the (valence) quark mass mqr0. The lattice is V =
143 ×28, β = 6.00.

densate is zero.
〈ψ̄ψ〉 = 0 (4)

• If the chiral symmetry is spontaneous breakdown,
the chiral condensate is not zero.

〈ψ̄ψ〉 6= 0 (5)

The quark obtains the mass through 〈ψ̄ψ〉. The
massless Nambu-Goldstone (NG) particle appears
through the Axial-scalar channel π ∼ ψ̄iγ5ψ [22].

First, we check the simple relation between the square
of the pseudo-scalar mass m2

π and the quark mass mq

as shown Fig. 5. The pseudo-scalar mass mπ is com-
puted from the eigenvalues and eigenvectors of the Over-
lap Dirac operator. The range of the physical quark mass
is 10 [MeV] ≤ mq ≤ 150 [MeV], (r0 = 0.5 [fm]). The fit-
ted results are A = 9.49(13), B =−0.17(3), χ2/n.o. f . =
7.4/7.0, FR (mqr0 unit) : 0.15− 0.36. The intercept B
does not become zero actually, but it is a comparatively
small value.

In this study the chiral condensate is evaluated from
the scale parameter Σ in the random matrix theory. In the
epsilon-regime of QCD, the random matrix theory pre-
dicts universally the distributions of eigenvalues of the
Dirac operators [28, 29]. We evaluate the chiral conden-
sate by comparing the distributions of eigenvalues. The
result of the chiral condensate at the continuum limit, con-
sidering the renormalization constant is [19, 27]

〈ψ̄ψ〉MS (2 GeV) = −2.31(11)×10−2 [GeV3] (6)

= −{285(4) [MeV]}3. (7)

The value of the chiral condensate is not zero, and the
pseudo-scalar mass m2

π becomes (about) zero at the limit
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mq → 0. These results are consistent with the Ward-
Takahashi identity derived from the Ginsparg-Wilson re-
lation [21]. That is to say, the Overlap fermion holds the
chiral symmetry.

We have confirmed that the additional monopoles do
not affect the spectra of the low-lying eigenvalues com-
puted from the Overlap Dirac operator, and found that the
additional monopoles change only the scale parameter Σ
in the random matrix theory. Therefore, we evaluate the
chiral condensate from the QCD vacuum with additional
monopoles.

The numerical results clearly show that the values of
the chiral condensate gradually decrease by increasing the
values of the monopole charges as shown in Fig. 6. This
is an evidence that monopoles are closely related to the
chiral symmetry breaking.

7 Quark masses and monopoles

Lastly, we evaluate the quark masses m̄ = mu+md
2 and ms

based on Refs. [30, 31].
In this study, we use the experimental results of the

decay constant and the mass of K meson as the input
values; f Exp.

K− = (156.2± 0.2± 0.6± 0.3) [MeV] (2013)
and mExp.

K− = 493.677±0.013 [MeV] (2014) (Particle Data
Group). We determine the scale of our system. The scale
is a−1 = 2.00(8) [GeV]. We do not consider the errors of
the experimental results in our calculations.

We then evaluate the quark masses considering the
renormalization constant. The results of the quark masses
in MS-scheme at 2 [GeV] using normal QCD vacuums
are

m̄MS (2 GeV) = 4.0(4) [MeV], (8)

mMS
s (2 GeV) = 98(9) [MeV], (9)

(a−1 = 2.00(8) [GeV]).

The experimental results are

m̄ = 3.5+0.7
−0.2 [MeV], (10)

ms = 95(5) [MeV] (PDG). (11)

These results are consistent. The preliminary results in
Fig. 7 show that the quark masses become gradually
heavy by increasing the values of monopole charges.

8 Conclusions

We confirmed that the Overlap fermion preserves the chi-
ral symmetry. We showed that the monopoles are re-
lated to instantons, the breakdown of the chiral symme-
try, and the masses of the quarks, using the supercom-
puter SX-series. Especially, the monopoles may affect



the masses of the quarks. This result indicates a possi-
bility that the effects of monopoles can be detected in ex-
periments. Now, we are checking the effects of the finite
lattice volume and the discretization.
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