Microscopic calculations based on chiral two- and three-nucleon forces for protonand ${ }^{4} \mathrm{He}$-nucleus scattering

M. Toyokawa ${ }^{1}$, M. Yahiro ${ }^{1}$, T. Matsumoto ${ }^{1}$, K. Minomo ${ }^{2}$, K. Ogata 2, and M. Kohno ${ }^{2}$
${ }^{1}$ Department of Physics, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
${ }^{2}$ Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

One of the important issue in nuclear physics is understanding the effects of three-nucleon force (3NF) on nuclear reactions, finite nuclei, and infinite matter. Recently, chiral effective field theory (Ch-EFT) has made a theoretical breakthrough in this issue [1, 2]. Ch-EFT allows us to define two-, three-, and many-nucleon forces systematically. Another important issue is microscopic understanding of nucleon- and nucleus-nucleus optical potentials. The g-matrix folding model is a standard approach to obtaining the optical potential microscopically. In this work, new g matrix from chiral two-nucleon force (2NF) and 3NF is constructed by Brueckner-HartreeFock (BHF) method and we apply it to proton- and ${ }^{4} \mathrm{He}$ elastic scattering [3].

In the BHF method, the g matrix is obtained by solving Brueckner-Bethe-Goldstone equation. Since the direct treatment of the 3 NF is so difficult even in infinite matter, we introduce an effective 2 NF derived from 3NF with the mean-field approximation. For more convenience we derive the local g matrix with Gaussian form by keeping the on-shell and near-on-shell components consistent with the original ones. Applying the local g matrix to the folding model, we obtain the optical potentials for proton- and ${ }^{4} \mathrm{He}$ elastic scattering.

Figure 1 shows the differential cross sections $d \sigma / d \Omega$ and the vector analyzing power A_{y} for proton scattering on ${ }^{40} \mathrm{Ca},{ }^{58} \mathrm{Ni}$, and ${ }^{208} \mathrm{~Pb}$ targets at $E_{\text {in }}=65 \mathrm{MeV}$, and $d \sigma / d \Omega$ for ${ }^{4} \mathrm{He}$ scattering on ${ }^{58} \mathrm{Ni}$ and ${ }^{208} \mathrm{~Pb}$ targets at $E_{\text {in }} / A_{\mathrm{P}}=72 \mathrm{MeV}$. The results of chiral g matrix with 3 NF effects (solid lines) reproduce the measured $d \sigma / d \Omega$ and A_{y} without any adjustable parameters for each system. The effects of 3 NF for proton scattering are small at forward and middle angles where the experimental data are available. On the other hand, the effects for ${ }^{4} \mathrm{He}$ scattering are clearly seen at middle angles, because the near-side and far-side of scattering amplitude [4] are decomposed well. We found that chiral 3NF makes the optical potentials less attractive and more absorptive, and these effects mainly originated in the 2π-exchange diagram in chiral 3NF.

Figure 1: Angular distribution of (a) differential cross sections and (b) vector analyzing powers for proton elastic scattering at 65 MeV , and (c) differential cross sections for ${ }^{4} \mathrm{He}$ scattering at 72 MeV . The solid (dashed) lines represent the results of the chiral g matrix with (without) 3NF effects. Each cross section (vector analyzing power) is multiplied (shifted up) by the number in the figure. Experimental data are from Refs. [5, 6]

References

[1] E. Epelbaum, H. -W. Hammer, and Ulf-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)
[2] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[3] M. Toyokawa, M. Yahiro, T. Matsumoto, K. Minomo, K. Ogata, and M. Kohno, Phys. Rev. C 92, 024618 (2015).
[4] R. C. Fuller, Phys. Rev. C 12, 1561 (1975).
[5] H. Sakaguchi et al., Phys. Lett. B 89, 40 (1979); 99, 92 (1981).
[6] B. Bonin et al., Nucl. Phys. A 445, 381 (1985).

