Four-body dynamics in ⁶Li scattering

S. Watanabe¹, T. Matsumoto², K. Ogata³, and M. Yahiro²

¹RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

²Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

³Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

We investigate reaction dynamics of ⁶Li elastic scattering on the heavy targets $T = {}^{208}Pb$ or ${}^{209}Bi$. It was reported that the standard three-body continuum-discretized coupled-channels method (three-body CDCC) based on the $d + \alpha + T$ model cannot reproduce the measured cross section at around the Coulomb barrier energy (~ 30 MeV) [1]. We then apply four-body CDCC based on the $n + p + \alpha + T$ model and clarify the reaction dynamics [2].

In present four-body CDCC, the Schrödinger equation is solved in the model space P spanned by the ground and discretized-continuum states of ⁶Li: $P = \sum_{\gamma=0}^{N} |\Phi_{\gamma}\rangle \langle \Phi_{\gamma}|$, where Φ_{γ} represents the γ -th eigenstate, and the $\gamma = 0$ and $\gamma = 1-N$ correspond to the ground and discretized-continuum states, respectively. In order to investigate the breakup mechanism, we restrict the model space P. For this purpose, we first specify whether the breakup state Φ_{γ} ($\gamma = 1-N$) is the $d\alpha$ -dominant or $np\alpha$ -dominant breakup state by calculating the squared overlap between Φ_{γ} and the d ground state $\phi^{(d)}$: $\Gamma_{\gamma}^{(d\alpha)} = |\langle \phi^{(d)} | \Phi_{\gamma} \rangle|^2$. If $\Gamma_{\gamma}^{(d\alpha)}$ is larger (smaller) than 0.5, the state is defined as a $d\alpha$ -dominant state $\Phi_{\gamma}^{(d\alpha)}$ ($np\alpha$ -dominant state $\Phi_{\gamma}^{(np\alpha)}$). With the $d\alpha$ - and $np\alpha$ -dominant state above, the CDCC model space P can be decomposed into the three parts $P = P_0 + P_{d\alpha} + P_{np\alpha}$, where

$$P_{0} = |\Phi_{0}\rangle \langle \Phi_{0}|, \ P_{d\alpha} = \sum_{\beta} |\Phi_{\beta}^{(d\alpha)}\rangle \langle \Phi_{\beta}^{(d\alpha)}|, \ P_{np\alpha} = \sum_{\delta} |\Phi_{\delta}^{(np\alpha)}\rangle \langle \Phi_{\delta}^{(np\alpha)}|.$$
(1)

In the following discussion, we calculate cross sections by switching on and off the subspaces $P_{d\alpha}$ and $P_{np\alpha}$.

Figure 1 shows ${}^{6}\text{Li} + {}^{208}\text{Pb}$ scattering at 39 MeV. The solid and dotted lines correspond to the full and 1ch calculations, respectively. These are nothing but the calculations in P and P_0 , respectively. The difference comes from breakup effects and the full calculation reproduces the experimental data well by virtue of breakup effects [2, 3]. Now, we switch on only the subspace $P_{np\alpha}$ or $P_{d\alpha}$ from P_0 in order to investigate the breakup mechanism. The dot-dashed line represents the calculation of $P_0 + P_{np\alpha}$ and it is close to 1ch calculation (dotted line). On the other hand, the dashed line corresponds to the calculation of $P_0 + P_{d\alpha}$ and it simulates the full calculation (solid line) almost perfectly. It should be noted that the number of $d\alpha$ -dominant states is much less than that of $np\alpha$ -dominant states in the present model space P. As seen above, $d\alpha$ breakup is favored in ${}^{6}\text{Li}$ scattering. This property is now called $d\alpha$ -dominance, and we have found that the $d\alpha$ -dominance is realized in a wide energy range [2]. In other words, d (*i.e.* the n-p subsystem of ${}^{6}\text{Li}$) hardly breaks up during ${}^{6}\text{Li}$ scattering.

Figure 1: Elastic cross sections for ${}^{6}\text{Li} + {}^{208}\text{Pb}$ scattering at 39 MeV. The solid and dotted lines correspond to the results of full and 1ch calculations, respectively. The dot-dashed line represents the calculation with the model space $P_0 + P_{np\alpha}$, whereas the dashed line shows the calculation with $P_0 + P_{d\alpha}$. The experimental data is taken from Ref. [4].

References

- [1] N. Keeley et al., Phys. Rev. C 68, 054601 (2003).
- [2] S. Watanabe *et al.*, Phys. Rev. C **92**, 044611 (2015).
- [3] S. Watanabe *et al.*, Phys. Rev. C 86, 031601(R) (2012).
- [4] N. Keeley et al., Nucl. Phys. A 571, 326 (1994).