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Abstract

The microscopic feature of the nuclear physics can be described by the quan-
tum chromodynamics (QCD), which is the SU(3) gauge-invariant quantum
field theory. One of the most powerful tools to investigate the QCD dynam-
ics is “Lattice formula”, since it is only known both nonperturbative and
gauge-invariant regularization method. The numerical simulations based on
the lattice formula have gotten several successes, for instance, it reproduces
many hadron spectrum only with a few input parameter, reveals the chiral
property of QCD, and explains the origin of the hadron masses.

In this report, I would like to introduce a recent progress related to the
QCD in finite-temperature, namely the QCD thermodynamics, using the
lattice numerical simulations.

1 Introduction

The study of QCD thermodynamics and the determination of the phase di-
agram of QCD in finite-temperature and finite-density are quite featured on
in recent years. A transition occurs in finite-temperature, from a hadronic-
and confined-matter at low-temperature to a decofined- and colorful-matter
at high-temperature. The QCD in high-temperature can be produced in
the laboratory, e.g. LHC (Large Hadron Collider) at CERN, RHIC (Rel-
ativistic Heavy Ion Collider) at BNL and SIS (SchwerIonen-Synchrotron)
at GSI. Investigating the (in)consistency between these experimental data
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and the theoretical predictions from the lattice MonteCarlo simulation and
phenomenological models leads to the understanding of the QCD properties
under extreme conditions. The experimental data show that thermal QCD
matters exhibit robust fluid-phenomena, which are consistent with a picture
given by near-ideal relativistic hydrodynamics. The hydrodynamical models
need some inputs of equation of state which are relates with the thermody-
namic quantities. Therefore, a precise determination of the thermodynamic
quantities (e.g. thermal entropy, pressure and so on) is an important task to
understand the nature of QCD in the high-energy experiment as well as the
early-universe.

We (Ref. [1]) have proposed the novel method to obtain the thermody-
namic quantities using the lattice MonteCarlo simulations. Before our work,
the “integral method” (or “differential method”), in which we basically cal-
culate the free energy of thermodynamics, is a standard method to obtain
the thermodynamic quantities. On the other hand, our method is based
on the direct calculation of the energy-momentum tensor (EMT) using the
“gradient flow” technique [2, 3]. In this report, I briefly review of our basic
idea and the numerical results of the thermodynamic quantities shown in
Ref. [1] and address recent progresses reported in Ref. [4, 5]. We found that
the advantages of our method are following:

• We can define the “correctly renormalized EMT” from lattice data in
the continuum limit

• Signals become much better because of the smearing effects of the gra-
dient flow technique

• It is not necessary to calculate the wave function renormalization of
the EMT operator thank to its UV finiteness (in quenched QCD)

2 Entropy and interaction measure

For simplicity, in this report, we consider the gluonic (pure Yang-Mills) the-
ory, while our formulation can be applied to the full-QCD theory including
the dynamical fermions [4].

The fundamental thermodynamic quantities in QCD are the energy den-
sity (ϵ) and the pressure (P ) of the system in equilibrium states. In the
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integral method, the free energy (f) are numerically calculated and in the
thermodynamic limit, the pressure is related to the free energy as

p = − lim
V→∞

f. (1)

The energy density is given by “interaction measure (trace anomaly)” (I =
ϵ− 3P ), and the interaction measure is a derivative of the normalized pres-

sure: I = T 5 ∂
∂T

P (T )
T 4 . Now, the thermal entropy (s) can be calculated by

s = ϵ+P
T

. Numerically, taking a derivative is a hard task since we have to un-
derstand systematic “true functional form” of the quantities as a function of
the temperature, so that it strongly depends on the systematic uncertainties.

On the other hand, in the word of EMT (Tµν) in the Euclidean co-moving
frame, the energy density and pressure are directly related to a component
of the EMT:

Tii = −P (for i = 1, 2, 3), T44 = ϵ. (2)

We perform the MonteCarlo simulation only at the temperature, that we
want to know, and calculate the EMT. The interaction measure and entropy
are given by

I =
4∑

µ=1

Tµµ, sT = T44 − T11, (3)

from EMT.
The problem is how to formulate the proper EMT on the lattice, which

is ultra-violet (UV) finite and is conserved in the continuum limit. Such a
construction is not a trivial task due to the explicit breaking of the Poincaré
invariance on the lattice.

In ref. [6], one possible proper EMT has been proposed on the basis of
the Yang-Mills gradient flow[2]. The key idea is to represent the EMT in the
continuum limit by UV-finite and local operators obtained from the gradient
flow.

The EMT is given by

TR
µν(x) = lim

t→0

{
1

αU(t)
Uµν(t, x) +

δµν
4αE(t)

[E(t, x)− ⟨E(t, x)⟩0]
}
, (4)

where the perturbative coefficients (αU(t) and αE(t)) are calculated in Ref. [6],
that are written by the running gauge coupling and the coefficient of the β-
function of the Yang-Mills theory. The operators Uµν(t) and E(t) are the
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dimension-4, gauge-invariant, and symmetry operators at the gradient flow-
time (t).
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Figure 1: Continuum limit of the interaction measure and entropy density
obtained by the gradient flow method for T/Tc = 1.65, 1.24, and 0.99 ob-
tained in Ref. [1]. Blue solid lines are results of Ref. [7] obtained by the
integral method.

In Fig. 1, (ϵ−3P )/T 4 = ⟨
∑4

µ=1 Tµµ⟩/T 4 and (ϵ+P )/T 4 = ⟨T44−T11⟩/T 4

are plotted after taking the continuum limit for T/Tc = 1.65, 1.24, and 0.99,
where ϵ, P denote energy density and pressure, respectively. For comparison,
results of Ref. [7] obtained by the integral method are shown by blue solid
lines in Fig. 1 (the data also has roughly 2% errors). The results of the two
different approaches are consistent with each other within statistical errors.

As I explained, the integral method is based on the macroscopic picture
in finite-temperature QCD, while our method is based on the microscopic
picture, namely the quantum field theory. It is the first numerical confir-
mation of the consistency between micro- and macro-scopic pictures of the
QGP phase in (quenched) QCD.

3 (Toward) determination of shear viscosity

We now move on the calculation of the two-point function of EMT. It is
related to the shear and bulk viscosity, and here we focus on the former one,
which is given by the correlation function of T12 component. There are several
works [8, 9, 10], where the correlation function of EMT are calculated on
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lattice. In these works, we explained before, there exit at least two difficulties,
the renormalization of the lattice bare EMT operator and the bad signal to
noise ratio of the quantity.

In Fig. 2, we plot the correlation function of “lattice bare T12 operator”
(U12) without the gradient flow (right panel) and with the gradient flow (left
panel). Here the number of the measured configurations for each color in both
panels is the same. Although the data should be positive by definition and
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Figure 2: Correlation function of U12 operator, C̃(τ) =
⟨
∫
dx⃗⟨U12(0, 0⃗)U12(τ, x⃗)⟩, without the gradient flow (left panel) and

with the gradient flow (right panel), where the number of the measured
configuration for each color in both panels is the same.

indeed so in Ref. [8] with high statistics, some un-flowed data in Fig. 2 become
negative due to large noises in this statistics. On the other hand, at the finite
flow-time (we take rsmearT = 0.25 with rsmear =

√
8t), the correlation function

is positive at all τ despite low statistics, demonstrating that signals are highly
improved.

Still, it is an ongoing project, and we will extract the spectrum function
and the physical obserbles from the correlation function. We will obtain a
precise prediction for the shear viscosity in QGP phase, which is very small
value in experiment, using the MonteCarlo simulation, and will understand
the hydrodynamic properties near future.
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