Gamow-Teller transition strengths from the ground state of 16 O studied via high resolution (3 He,t) reaction at 140 MeV/nucleon

H. Fujita¹, Y. Fujita¹, E159 and E197 collaborations

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

From the high resolution ${}^{16}O({}^{3}He,t)$ data at 0° and at 140 MeV/nucleon taken in the E159 and E197 beam time, reduced Gamow-Teller strengths, B(GT) values from the ground state of the ${}^{16}O$ were deduced. As the ${}^{16}O$ target, Mylar foil (Polyethylene Terephthalate) and ${}^{11}B_2O_3$ were used in E159 and E197, respectively.

In a naive Shell-Model picture, the ¹⁶O nucleus is expected to be fully occupied up to $p_{1/2}$ orbit and thus it forms the doubly closed nucleus, therefore no GT strength is expected. However, empirically 1⁺ states are known in ¹⁶F nucleus at 3.758 MeV and 4.654 MeV, suggesting such a naive picture is not realistic. Recently, via the ¹⁶O(p, d)¹⁵O reaction, possibility of large components of high-momentum neutrons in the ¹⁶O ground state configuration due to the tensor interaction was suggested [1]. Investigation of the Gamow-Teller transition strengths to these 1⁺ states will give additional information of the ¹⁶O ground state structure.

Figure 1: The spectrum taken at 0° obtained in the E159 experiment. Scattering angle of less than 0.5° is included.

As shown in Fig. 1, the known 1⁺ states in ¹⁶F at 3.758 MeV and 4.654 MeV and the 1⁺ ground state in ¹⁸F were clearly observed. In order to deduce B(GT) values, proportionality between reaction cross sections and B(GT) values was assumed. The GT unit cross section in the A = 18 system was deduced by using the strong GT transition from the ¹⁸O to the ¹⁸F ground state. The corresponding B(GT) value was determined by using the β decay of ¹⁸F, which connects the same states in the opposite direction. Applying the mass dependence of the GT unit cross section given in Ref. [2] and the natural abundance ratio of ¹⁸O and ¹⁶O, the GT unit cross section at A = 16 was estimated. Distortion and kinematic factors in the proportionality were taken into account. As shown in Table 1, consistent results within the error bars were obtained.

Table 1: Obtained B(GT) values from the E159 and E197 data.

E_x	E159	E197
3.758	0.016(2)	0.017(2)
4.654	0.071(9)	0.058(7)

References

- [1] H.J. Ong et al., Phys. Lett. B 725, 277 (2013).
- [2] R.G.T. Zegers *et al.*, Phys. Rev. Lett. **99**, 202501 (2007).