Study of high-spin states in ⁴⁴Ti

E. Ideguchi¹, Y.D. Fang¹, M.P. Carpenter², R. Yokoyama³, S. Michimasa³, H.J. Ong¹, Y. Ayyad¹, S. Noji¹, N. Aoi¹, A. Tamii¹, C. Iwamoto¹, T. Suzuki¹, H. Suzuki¹, D.T. Tran¹, T.H. Hoang¹, P.Y. Chan¹,

A. Odahara⁴, S. Kanaya⁴, H. Nishibata⁴, A. Yagi⁴, H. Kanaoka⁴, T. Kawamura⁴, S. Morimoto⁴, T. Shimoda⁴,

T. Koike⁵, Y. Yamamoto, S. Zhu², P. Fallon⁶, R.V.F. Janssens², T. Lauritsen², C.J. Chiara⁷, B. Olaizola⁸,

and CAGRA collaboration

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²Argonne National Laboratory, USA

³Center for Nuclear Study (CNS), University of Tokyo,

⁴Department of physics, Osaka University

⁵Department of physics, Tohoku University

⁶Lawrence Berkeley National Laboratory

⁷Army Research Laboratory

 8 University of Guelph

After the systematic studies of superdeformed (SD) states in various mass regions[1], a new 'island' of SD nuclei was found in A~40 (i.e., 36,40 Ar[2, 3], 40,42 Ca[4, 5, 6], and 44 Ti[7]). Ground states of these isotopes have a spherical shape due to the magic and near magic natures. In the excited states, these nuclei have large deformed structures after promoting protons and neutrons across shell gaps between *sd* and *pf* orbitals. Onset of such defomed structures in this A~40 region can be qualitatively understood by the presence of superdeformed shell gaps at N=Z=18, 20, 22, which are caused by the crossing of sigle particle orbitals of *sd* and *pf* shells at large deformation. Among these SD nuclei, quadrupole moments of 36,40 Ar[2, 3], 40 Ca[4, 5] were measured and the exprimental result shows large quadrupole defomation. In 44 Ti, a rotational band built on the 0^+_2 level as a candidate of SD band with 8p-4h configurationis was identified[7], but its quadrupole momente was not measured. In order to investigate the quadrupole deformation of such collective states in 44 Ti, a high-spin gamma-ray spectroscopic experiment was performed.

In order to produce high-spin states of ⁴⁴Ti, a ²⁴Mg(²⁴Mg,2p2n)⁴⁴Ti fusion-evaporation reaction was employed. A ²⁴Mg beam with an energy of 104 MeV was used to produce high-spin states. Cross section to produce ⁴⁴Ti at the ²⁴Mg beam energy of 104 MeV was estimated by the statistical model CASCADE[8] to be ~20 mb. Gamma rays and charged particles emitted from the reaction products were measured by the CAGRA array and a 4π charged-particle array, Si-Ball[9], respectively. The CAGRA array was composed of 14 Clover-type Ge detectors with BGO anti-Compton shield in the experiment. The CAGRA data and the Si-Ball data were taken using the digitizer and trigger modules developed for GRETINA[10] with firmware and DAQ developed for Digital Gammasphere[11]. The data was sorted offline to make $\gamma - \gamma$ coincidence matrix.

Figure 1: (a) Total projection spectrum of $\gamma - \gamma$ coincidence matrix. γ peaks associated with ³⁶Ar, ⁴²Ca, ⁴¹Ca, ³⁹K, and ⁴⁴Sc are labelled with open circle, filled square, open square, filled diamond, and open diamond, respectively. (b) A sum of γ -gated spectra of 1082 and 1371 keV transitions. γ transitions of ground band, negative parity band, and superdeformed band are labelled with filled diamond, open diamond, and filled triangle, respectively.

In Figure 1, a total projection spectrum of $\gamma - \gamma$ coincidence matrix was plotted (a). Strong γ peaks showing up in the spectrum are associated with the γ -ray transitions in ³⁶Ar, ⁴²Ca, ⁴¹Ca, ³⁹K, and ⁴⁴Sc which

are estimated in the CASCADE calculation to be strong channels in the ²⁴Mg+²⁴Mg reaction. Figure 1 (b) is a sum of γ -gated spectra of 1082 and 1371 keV peaks which are the low-lying $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ transitions in ⁴⁴Ti, respectively. As shown in the figure, γ peaks associated with the transitions of high-spin states in ⁴⁴Ti are clearly seen. By gating on these transitions, further analysis on the high-spin states in ⁴⁴Ti will be performed.

References

- [1] B. Singh, R. Zywina, R.B. Firestone, Nucl. Data Sheets 97, 241 (2002).
- [2] C.E. Svensson *et al.*, Phys. Rev. Lett. 85, 2693 (2000).
- [3] E. Ideguchi et al., Phys. Lett. B 686, 18 (2010).
- [4] E. Ideguchi et al., Phys. Rev. Lett. 87, 222501 (2001).
- [5] C.J. Chiara *et al.*, Phys. Rev. C 67, 041303(R) (2003).
- [6] K. Hadyńska-Klęk et al., Phys. Rev. Lett. 117, 062501 (2016).
- [7] C.D. O'Leary et al., Phys. Rev. C 61, 064314 (2000).
- [8] F. Pühlhofer, Nucl. Phys. A 280, 267 (1977).
- [9] T. Kuroyanagi et al., Nucl. Instrum. Methods Phys. Res. A 316, 289 (1992).
- [10] J.T. Anderson et al., IEEE Transactions on Nuclear Science 56 258 (2009).
- [11] J.T. Anderson et al., IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 1536 (2012).