RESEARCH REPORT FOR RCNP 2016

(Experimental Nuclear Physics)

Development of New Calibration Method Using ²⁴Na Source For CANDLES

Van Thi Thu Trang^{1,2} and Tadafumi Kishimoto^{1,2} for the CANDLES collaboration ¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan ²Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

CANDLES experiment at the Kamioka Underground Observatory is searching for neutrinoless double beta decay of ⁴⁸Ca which has highest Q-values (4.3 MeV) among all $\beta\beta$ isotopes. A precise energy calibration of CANDLES detectors at Q-value of ⁴⁸Ca is crucial for the identification of candidate 0v $\beta\beta$ events. We have been using an ⁸⁸Y radioactive source that emits two γ -rays of 0.89 MeV and 1.84 MeV for CANDLES calibration. However, these γ -ray energies of ⁸⁸Y are not high enough for the Q-value region of ⁴⁸Ca (4.3 MeV). Therefore, we aim to develop a new calibration γ -ray source with higher γ -ray energies which is ²⁴Na source with two γ -rays 1.37 MeV and 2.75 MeV. The ²⁴Na source is produced by neutron activation ²³Na inside NaI(Tl) scintillation. When ²⁴Na is created in NaI(Tl) scintillation, all beta rays of ²⁴Na are absorbed in this NaI(Tl) scintillation, while the γ -rays mainly escape from the NaI(Tl) scintillation and were detected by the CANDLES detectors to calibrate energy. Therefore, we can take gamma spectrum of ²⁴Na by beta and gamma coincidence method. In this report, we will summarize the status of our experiment.

Our experiment is divided into two phases: phase I at Osaka University (commissioning) and phase II at Kamioka Underground Observatory (setup into CANDLES experiment).

In phase I, we measured the coincidence gamma spectrum of ²⁴Na source by a NaI(Tl) detector. A ²⁵²Cf neutron source covered by paraffin for moderation of fast neutrons was used to irradiate the 2x2 inch NaI(Tl) detector as source. ²⁴Na spectrum is shown in figure 1. Then, we estimated the detection efficiency by GEANT 4. As a result, the ²⁴Na intensity was around 7 Bq. Based on this result, we optimized size and geometry of NaI(Tl) detector as ²⁴Na source for CANDLES calibration. Three 2x6 inch NaI(Tl) detectors are required to calibrate for CANDLES detectors. In addition to, we also optimized the neutron activation configuration for three NaI(Tl) detectors by using graphite as neutron reflection material combining with paraffin as moderation material. After these optimizations, we designed the delivery system for three NaI(Tl) detectors into CANDLES setup.

Currently, we are preparing for phase II which setup three NaI(Tl) detectors as ²⁴Na source into CANDLES experiment.

Figure 1. Gamma spectrum of ²⁴Na source by beta-gamma coincidence method