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The new muon beamline, MuSIC (MUon Science Innovative beam Channel) provides an intense DC muon
beam at the west experimental hall, RCNP. The most remarkable feature of the MuSIC beamline is to produce
the intense muon beam from a low-current proton beam very e�ciently. The pions are produced with a very
thick (20 cm-thick) graphite target and then, pions and decayed muons are collected with a large solid-angle
superconducting solenoid magnets [1, 2]. Until 2016, beamline commissioning experiments were performed under
a proton current of 20 nA [3]. In February, 2017, beamline shields and associating other components around
the muon production target were improved to provide the 1.1 µA muon beam. Owing to this upgrades, more
intense muon beam was successfully delivered to the experimental port. The present MuSIC beamline provides
approximately 105-106 counts/sec positive and 104-105 counts/sec negative muon beams in a momentum range
from 28 to 110 MeV/c. A part of the proposed scientific programs was started in 2017.

Experiments with the negative muon beam started prior to various proposed experiments to take advantage
of a time structure of the DC beam combined with germanium detectors. A nuclear physics experiment (E475,
T. Matsuzaki et al.) [4] in February and a non-destructive analysis in astronomy (E490, K. Terada et al.) [5]
in June were performed with the intense muon beam. On the other hands, using the positive muons beam,
a practical tests of a µSR (muon spin rotation, relaxation and resonance) measurement with a cryostat were
started for condensed matter physics. In this article, we will briefly report present statuses of the beamline
upgrade and µSR preparation at MuSIC.

The radiation shield is one of the main components to be improved for 1µA proton beam operation. Fig-
ure 1(a) shows a photograph of radiation shields using thick irons and concrete blocks surrounding the pion
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Figure 1: Upgrade of beamline for 1.1 µA-proton beam operation. (a) Schematic figure and photographs of enforced

radiation shields around superconducting solenoids. (b)(c) Proton beam current dependence of a muon yield

(normalized with the yield at the proton beam current of 20 nA) and muon production target temperature,

respectively.



(a) µSR spectrometer (b) cryostat and chamber

(c) data acquisition 
module
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Figure 2: (a) Photograph of new µSR spectrometer fabricated with a helium flow cryostat and sample chamber con-

nected with a cooling system with liquid helium. (b)(c) Photographs of the helium flow cryostat and a

data acquisition module, Kalliope-DC. (d1) µ-e decay time spectra observed with upstream and downstream

counters in the transverse field of 0.004 Tesla, respectively. (d2) Spin asymmetry spectra calculated with the

time spectra in Fig.(d1).

capture solenoid. Especially we increase shielding blocks at the inlet and outlet of the beams, and at the top
of the solenoid magnets, which enabled us to reduce neutron radiation outside of the shields. In the following
beam commissioning test, we carefully increased the proton beam current up to 1.1 µA and measured the muon
yield. Figure 1(b) shows proton beam current dependence of the positive muon yield normalized with the yield
at the proton beam current of 20 nA. We confirmed that the muon yield linearly increased to the proton beam
current up to 1 µA. We checked temperature of the muon production target shown in Fig. 1(c). It also increased
linearly to the proton beam current. We successfully obtained an intense muon beam as we expected with 20 nA
proton beam. This upgrade enabled us to perform various experiments with reasonably short beam time.

A feasibility of µSR have been investigated in the beam commissioning tests. We newly fabricated a cryostat
and a cooling system in the µSR spectrometer in the experimental area. Figure 2(a) shows the new spectrometer
with the helium flow cryostat (MicrostatHe, Oxford Instruments) and a sample chamber (Fig. 2(b)). A new
data-acquisition module (Kalliope-DC Fig. 2(c)) was employed to measure µ-e decay positrons timings. Their
time spectra (Fig. 2(d1)) and a calculated spin asymmetry spectrum from these time spectra (Fig. 2(d2)) are
shown. We achieved to cool a sample around 4 K with this setup. We are continuing further commissioning
and improvement for practical µSR experiments.

In summary, we successfully provided the intense muon beam by upgrading the beamline. Some scientific
programs started this year with the negative muon beam. For the µSR study with the positive muon beam, we
installed the spectrometer with new apparatuses for practical experiments. In 2018, we are planning various
scientific program: µSR experiments, other elemental analysis with negative muons, particle and nuclear physics
experiments and radiation test of semiconductor devices for industrial application.
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