Manifestation of α -clustering in ¹⁰Be via α -knockout reaction

M. Lyu¹, K. Yoshida¹, Y. Kanada-En'yo² and K. Ogata¹

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Despite the remarkable successes achieved by the cluster models, the physical observables that are directly related to the cluster degree of freedom is not available until very recent studies of α -transfer reactions and α -knockout reactions [1, 2].

For the first time, we introduce the microscopic structure models into the theoretical frameworks for α -knock out reactions to probe the α -clusters in ¹⁰Be nucleus [3]. In this work, we integrate the THSR wave function and the distorted wave impulse approximation (DWIA) framework, and make the first calculation for the ¹⁰Be(p,p α)⁶He reaction. The α -cluster reduced width amplitude is extracted from the microscopic wave function of ¹⁰Be via an approximated approach [4]. Optical potentials are determined by folding the density distributions of ¹⁰Be. The triple differential cross sections (TDX) is predicted for the ¹⁰Be(p,p α)⁶He knockout reaction at 250 MeV, as shown in Fig. 1. We further construct artificial states with extreme shell-model like or gas like states for the target nucleus ¹⁰Be. The differences between structures of these states are discussed by comparing the density distributions in the intrinsic frame. We find strong dependence of the TDX observable on the α -clustering structure by calculation of corresponding α -knock out reactions, as shown in Fig. 1.

Figure 1: The TDX of the ${}^{10}\text{Be}(p,p\alpha)^6\text{He}$ reaction at 250 MeV. Kinetic energy of incident proton is fixed at 180 MeV and its emission angle is set to $(\theta_1, \phi_1) = (60.9^\circ, 0^\circ)$. Emission angle ϕ_2 for daughter nuclei is fixed at 180° and θ_2 is varied around 51°. P_R is the recoiled momentum.

With this new framework, we relate directly the microscopic description of α -clustering structure to the reaction observables in the (p,p α) knockout reaction, and provide reliable manifestation of the α -clustering in the ¹⁰Be nucleus.

References

- [1] T. Fukui, Y. Taniguchi, T. Suhara, Y. Kanada-Enyo, and K. Ogata, Phys. Rev. C 93, 034606 (2016).
- [2] K. Yoshida, K. Minomo, and K. Ogata, Phys. Rev. C 94, 044604 (2016).
- [3] M. Lyu, K. Yoshida, Y. Kanada-En'yo, K. Ogata, to be published by Phys. Rev. C. (2018) [arXiv:nucl-th/1712.09753]
- [4] Y. Kanada-En'yo, T. Suhara, and Y. Taniguchi, Prog Theor Exp Phys 2014, 073D02 (2014).