

Exotic baryon resonances in the chiral dynamics

Tetsuo Hyodo^a

A. Hosaka^a, D. Jido^b, S.I. Nam^a, E. Oset^c, A. Ramos^d and M. J. Vicente Vacas^c

^{*a*} *RCNP*, *Osaka* ^{*b*} *ECT** ^{*c*} *IFIC*, *Valencia* ^{*d*} *Barcelona Univ*. 2003, December 9th

Motivations : Two poles?

There are two poles of the scattering amplitude around nominal $\Lambda(1405)$ energy region.

- <u>Cloudy bag model</u> (1990) J. Fink *et al.* PRC41, 2720
- Chiral unitary model
 (2001~)

J. A. Oller *et al.* PLB500, 263 E. Oset *et al.* PLB527, 99 D. Jido *et al.* PRC66, 025203 T. Hyodo *et al.* PRC68, 018201

Λ(1405) : J^P=1/2⁻, I=0

$\Lambda(1405)$ in the chiral unitary model

D. Jido, et al., Nucl. Phys. A 723, 205 (2003)

There are two mechanisms in the initial stage interaction, which filter each one of the resonances.

T. Hyodo, et al., nucl-th/0307005, Phys. Rev. C, in press

Effective interactions for meson part

1. γVP coupling

$$-it = ig_{\gamma K^* K} \epsilon^{\mu \nu \alpha \beta} P_{\mu} \epsilon_{\nu} (K^{*+}) k_{\alpha} \epsilon_{\beta} (\gamma) , \quad \gamma \longrightarrow K^{*+}$$
$$|g_{\gamma K^{*+} K^{\pm}}| = 0.252 \quad [\text{GeV}^{-1}] , \qquad K^{-} \checkmark K^{*+}$$
$$|g_{\gamma K^{*0} K^{0}}| = 0.385 \quad [\text{GeV}^{-1}] .$$

2. VPP coupling

$$-it(K^{*+} \to K^{+}\pi^{0}) = i\frac{g_{VPP}}{\sqrt{2}}\frac{1}{\sqrt{2}}[p_{\mu}(K^{+}) - p_{\mu}(\pi^{0})]\epsilon^{\mu}(K^{*+}) ,$$

$$-it(K^{*+} \to K^{0}\pi^{+}) = i\frac{g_{VPP}}{\sqrt{2}}[p_{\mu}(K^{0}) - p_{\mu}(\pi^{+})]\epsilon^{\mu}(K^{*+}) ,$$

$$\pi^{0},\pi^{+}$$

$$g_{VPP} = -6.05$$

$$K^{*+}$$

$$K^{*+},K^{0}$$

4. K⁻P -> $\Sigma(1385)$ -> MB amplitude

$$\begin{split} -it_{1i} = &c_1 c_i \left(\frac{12}{5} \frac{D+F}{2f}\right)^2 \mathbf{S} \cdot \mathbf{k}_1 \mathbf{S}^{\dagger} \cdot \mathbf{k}_i \frac{i}{M_I^{(b)} - M_{\Sigma^*} + i\Gamma_{\Sigma^*}/2} F_f(k_1) \\ = &c_1 c_i \left(\frac{12}{5} \frac{D+F}{2f}\right)^2 (k_1)_l (k_i)_m \left(\frac{2}{3} \delta_{lm} - \frac{i}{3} \epsilon_{lmn} \sigma_n\right) \frac{i}{M_I^{(b)} - M_{\Sigma^*} + i\Gamma_{\Sigma^*}/2} F_f(k_1) \\ F_f(k_1) = \frac{\Lambda^2 - m_K^2}{\Lambda^2 - (k_1)^2} \end{split}$$

Summary and conclusions

We study the structure of $\Lambda(1405)$ using the chiral unitary model.

There are two poles of the scattering amplitude around nominal Λ(1405).
 Pole 1 (1426+16i) : strongly couples to KN state Pole 2 (1390+66i) : strongly couples to πΣ state

b By observing the $\pi\Sigma$ mass distribution in the $\gamma p \rightarrow K^*\Lambda(1405)$ reaction, it could be possible to isolate higher energy pole.

Θ⁺ baryon : Introduction

CONSTRUCT COLLARS

Θ ⁺ : 5-quark (4 quark + 1 anti-quark)	
LEPS, T. Nakano et al., Phys. Rev. Lett	t. 91 (2003) 012002
$S = +1$, $M_{\Theta} \sim 1540$ MeV, $\Gamma_{\Theta} < 25$ MeV	
Quantum numbers are not yet determined	
Theory prediction	
D. Diakonov <i>et al.</i> (chiral quark soliton)	: 1/2+, I=0
Naive quark model	: 1/2-
S. Capstick <i>et al.</i> (isotensor formulation)	: 1/2 ⁻ , 3/2 ⁻ , 5/2 ⁻ , I=2
A. Hosaka (chiral potential)	: $1/2^+$ (strong π)
R. L. Jaffe <i>et al.</i> (qq-qq-q : 10 + 8)	: 1/2+, I=0
J. Sugiyama <i>et al</i> . (QCD sum rule)	: 1/2 ⁻ , I=0
F. Csikor et al. (Lattice QCD)	$: 1/2^+ -> 1/2^-$
S. Sasaki (Lattice QCD)	: 1/2-

Photo-production process

Assuming the quantum numbers (spin, parity), we can calculate a reaction

W. Liu *et al.* nucl-th/0308034
S. I. Nam *et al.* hep-ph/0308313
W. Liu *et al.* nucl-th/0309023
Y. Oh *et al.* hep-ph/0310117

• Model (mechanism) dependence

Initial cm energy ~ 2 GeV (p_{cm} ~ 750 MeV) not low energy -> linear or nonlinear? N* resonances, K* exchange, K₁ exchange,...

• Form factor dependence Monopole, dipole..., value of Λ , ...

Unknown parameters
 γΘΘ coupling, K*pΘ coupling, ...

Motivation and advantage

2000

We propose

K⁺p -> $\pi^+\Theta^+$ -> $\pi^+K^+n(K^0p)$

- Low energy model is sufficient (p_{cm} ~ 350 MeV)
- take decay into account -> background estimation
 -> Width independent
- Hadronic process : clear mechanism

to extract a qualitative behavior which depends on the quantum numbers of Θ^+ .

Determination of quantum numbers

New : pp -> $\Sigma^+\Theta^+$, A. W. Thomas, K. Hicks, and A. Hosaka, hep-ph/0312083

E. Oset and M. J. Vicente Vacas, PLB386, 39(1996)

Vertices are derived from the chiral Lagrangian

Possibilities of spin & parity

 $1/2^-$ (KN s-wave resonance) $M_R = 1540 \text{ MeV}$ $1/2^+$, $3/2^+$ (KN p-wave resonance) $\Gamma = 20 \text{ MeV}$

$$t_{K^{+}n(K^{0}p)\to K^{+}n}^{(s)} = \frac{(\pm)g_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} ,$$

$$t_{K^{+}n(K^{0}p)\to K^{+}n}^{(p,1/2)} = \frac{(\pm)\bar{g}_{K^{+}n}^{2}(\boldsymbol{\sigma}\cdot\boldsymbol{q}')(\boldsymbol{\sigma}\cdot\boldsymbol{q})}{M_{I} - M_{R} + i\Gamma/2} ,$$

$$t_{K^{+}n(K^{0}p)\to K^{+}n} = \frac{(\pm)\tilde{g}_{K^{+}n}^{2}(\boldsymbol{S}\cdot\boldsymbol{q}')(\boldsymbol{S}^{\dagger}\cdot\boldsymbol{q})}{M_{I} - M_{R} + i\Gamma/2} ,$$

$$g_{K^+n}^2 = \frac{\pi M_R \Gamma}{Mq} \ , \quad \bar{g}_{K^+n}^2 = \frac{\pi M_R \Gamma}{Mq^3} \ , \quad \tilde{g}_{K^+n}^2 = \frac{3\pi M_R \Gamma}{Mq^3}$$

Resonance term

Amplitude of resonance term for $K^+p \rightarrow \pi^+K^+n$:

$$-i\tilde{t}_{i}^{(s)} = \frac{g_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \left\{ G(M_{I})(a_{i} + c_{i}) - \frac{1}{3}\bar{G}(M_{I})b_{i} \right\} \boldsymbol{\sigma} \cdot \boldsymbol{k}_{in}S_{I}(i)$$

$$-i\tilde{t}_{i}^{(p,1/2)} = \frac{\bar{g}_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \bar{G}(M_{I}) \left\{ \frac{1}{3}b_{i}\boldsymbol{k}_{in}^{2} - a_{i} + d_{i} \right\} \boldsymbol{\sigma} \cdot \boldsymbol{q}'S_{I}(i)$$

$$-i\tilde{t}_{i}^{(p,3/2)} = \frac{\tilde{g}_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \bar{G}(M_{I}) \frac{1}{3}b_{i} \left\{ (\boldsymbol{k}_{in} \cdot \boldsymbol{q}')(\boldsymbol{\sigma} \cdot \boldsymbol{k}_{in}) - \frac{1}{3}\boldsymbol{k}_{in}^{2}\boldsymbol{\sigma} \cdot \boldsymbol{q}' \right\} S_{I}(i)$$

Angular dependence

Mass distributions

Conclusion

We calculate the $K^+p \rightarrow \pi^0 KN$ reaction using a chiral model, assuming the possible quantum numbers of Θ^+ baryon.

If we find the resonance with polarization test, the quantum number of Θ⁺ can be determined as I=0, J^P=1/2⁺

T. Hyodo, *et al*, nucl-th/0307105, Phys. Lett. B, in press E. Oset, *et al*, nucl-th/0312014, Hyp03 proceedings

Future work

Full calculation of the present reaction without approximation of kinematics
 -> information from π⁺ angular dependence
 photo-production of K* and Θ
 V. Kubarovsky et al., hep-ex/0307088

