Magnetic moments of the N(1535) resonance in the chiral unitary model

Tetsuo Hyodoa

S. I. Nam^{a,b}, D. Jido^a and A. Hosaka^a

^a RCNP, Osaka ^b Pusan National Univ., Korea

2003, June 21st

Motivations

Recent developments of the experimental technique enable us to measure the magnetic moments of the excited baryons.

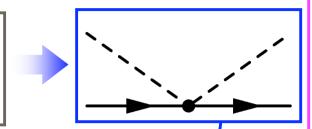
Application of the chiral unitary model

Chiral unitary model

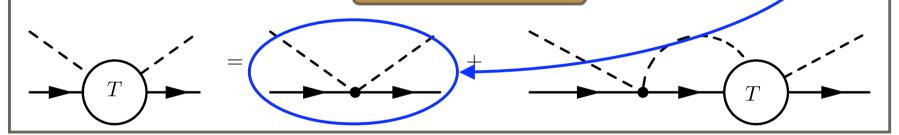
Flavor SU(3) meson-baryon scatterings (s-wave)

$$J^P = 1/2^-$$
Resonances

Chiral symmetry


Unitarity of S-matrix

Investigation of the resonance structure


Framework of the chiral unitary model

Chiral perturbation theory

$$\mathcal{L}_{WT} = \frac{1}{4f^2} \text{Tr}(\bar{B}i\gamma^{\mu}[(\Phi\partial_{\mu}\Phi - \partial_{\mu}\Phi\Phi), B])$$

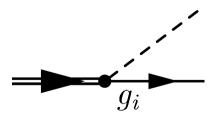
Unitarization

$$T_{ij}(\sqrt{s}) \sim \frac{g_i g_j}{\sqrt{s} - M_R + i\Gamma_R/2} + T_{ij}^{BG}$$

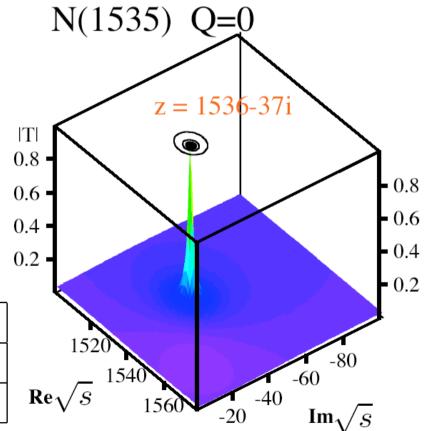
Generated resonances are expressed as the poles of the T-matrix.

$$J^P=1/2^-$$
 Resonances

The N(1535) resonance in the chiral unitary model

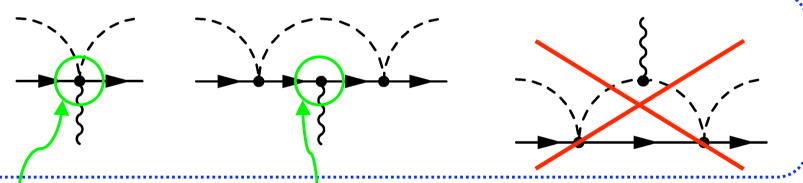

_			•			$K^+\Sigma^-$
Q = 1	$\pi^0 p$	$\pi^+ n$	ηp	$K^+\Lambda$	$K^+\Sigma^0$	$K^0\Sigma^+$

Positions of the poles


$$z_{n^*} = 1536 - 37i \; [\text{MeV}]$$

$$z_{p^*} = 1531 - 36i \; [\mathrm{MeV}]$$

Coupling strengths



	$ g_{\pi N} ^2$	$ g_{\eta N} ^2$	$ g_{K\Lambda} ^2$	$ g_{K\Sigma} ^2$
$oldsymbol{n}^*$	0.623	2.30	1.93	7.29
$oldsymbol{p}^*$	0.619	2.35	1.88	7.37

Photon coupling diagrams

ChPT

μ of ground state baryons

do not contribute

Extract μ_{N^*} T. Hyodo et al., nucl-th/0305023

Flavor SU(3) symmetry

Numerical results:

$$\mu_{n^*}{\sim}-0.25\mu_N~,~~\mu_{p^*}{\sim}1.1\mu_N~.$$
magnetic moments of Λ (1670)

$$\mu_{\Lambda^*}{\sim}-0.29\mu_N$$

D. Jido *et al.*, Phys. Rev. C 66, 025203 (2002)

SU(3) octet -> Coleman-Glashow relation

$$\mu_{n^*}{=}2\mu_{\Lambda^*}$$

Qualitatively: \bigcirc

Quantitatively: X

Flavor SU(3) symmetry

SU(3) decomposition of the coupling constant

representation	1	8	8	10	10	27
$n^*(1535)$	_	5.2	6.2	0.17		0.58
$\Lambda^*(1670)$	4.0	2.3	7.3			0.16

- Octet components are dominant and 10, 27 are small.
- ∴ Λ(1670) contains a singlet component.

The deviation from the SU(3) relation:

- mixture of the singlet component
- SU(3) breaking effects

Comparison with quark model

	$oldsymbol{n}^*[oldsymbol{\mu}_N]$	$m{p}^*[m{\mu}_N]$	picture
ChU model	-0.25	1.13	B
Quark model	-1.28	1.89	

W.-T. Chiang et al., nucl-th/0211061

The absolute values of the present results differ from those of the quark model, especially in n*.

difference of pictures of the excited states

Conclusions

We calculate the magnetic moments of the N(1535) resonance using the chiral unitary model.

$$\mu_{n^*} \sim -0.25 \mu_N \;, \quad \mu_{p^*} \sim 1.1 \mu_N \;.$$

- Signs of the results are consistent with the SU(3) (Coleman-Glashow) relation.
- The results qualitatively agree with those of the quark model, but the quantitative disagreement would reflects the difference of the pictures of the excited baryons.
 - D. Jido et al., Phys. Rev. C 66, 025203 (2002)
 - T. Hyodo, S.I. Nam, D. Jido and A. Hosaka nucl-th/0305023