$\Lambda(1405)$ production in the $\pi \rho \rightarrow K^0 \pi \Sigma$ reaction

Tetsuo Hyodo^a

A. Hosaka^a, E. Oset^b, A. Ramos^c and M. J. Vicente Vacas^b

^a RCNP, Osaka ^b IFIC, Valencia ^c Barcelona Univ.

2003, July 31st

T. Hyodo, et al., nucl-th/0307005

Motivations : Two poles?

There are two poles of the scattering amplitude around nominal $\Lambda(1405)$ energy region.

- <u>Cloudy bag model</u> (1990) Fink *et al.* PRC41, 2720
- Chiral unitary model (2001~)

Oller *et al.* PLB500, 263 Oset *et al.* PLB527, 99 Jido *et al.* PRC66, 025203 Hyodo *et al.* PRC68, 018201

Λ(1405) : J^P=1/2⁻, I=0

Two poles : 1390 + 66i ($\pi\Sigma$), 1426 + 16i ($\overline{K}N$)

Construct the initial stage interaction from ChPT.

At low energies, these two diagrams are relevant.

Experiment : D. W. Tomas, et al., NPB56, 15(1973)

Conclusions

We calculate the $\pi^- p \rightarrow K^0 \pi \Sigma$ reaction using the chiral unitary model.

- There are two mechanisms in the initial stage interaction.
- **They filter each one of the resonances.**
- chiral term : higher pole (1426+16i) N(1710) contribution : lower pole (1390+66i)
- Combination of the two mechanisms gives a good description of data.

