

Tetsuo Hyodo^a

A. Hosaka^a, M. J. Vicente Vacas^b and E. Oset^b

^a RCNP, Osaka ^b IFIC, Valencia

Special thanks to Prof. Morimatsu

2004, January 30th

Contents

1. Chiral unitary model

- 1. Motivation : Two poles?
- 2. Framework of the chiral unitary model
- **3. Example : K⁻p scatterings**
- 4. Pole structure of $\Lambda(1405)$
- **2.** K*Λ(1405) production
 - **1. Advantage of the reaction**
 - 2. Effective interactions
 - **3. Numerical results**
 - 4. Summary and conclusions

Motivation : Two poles?

There are two poles of the scattering amplitude around nominal $\Lambda(1405)$ energy region.

- <u>Cloudy bag model</u> (1990) J. Fink *et al.* PRC41, 2720
- Chiral unitary model
 (2001~)
 - J. A. Oller *et al.* PLB500, 263 E. Oset *et al.* PLB527, 99 D. Jido *et al.* PRC66, 025203 T. Hyodo *et al.* PRC68, 018201

Λ(1405) : J^P=1/2⁻, I=0

$\Lambda(1405)$ in the chiral unitary model

D. Jido, et al., Nucl. Phys. A 723, 205 (2003)

Effective interactions for vector meson

1. γVP coupling

$$\mathcal{L}_{K^*K\gamma} = g_{K^*K\gamma} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} (\partial_{\alpha} K^{*-}_{\beta} K^+ + \partial_{\alpha} \bar{K}^{*0}_{\beta} K^0) + \text{h.c.}$$

2. VPP coupling

3. $\Sigma(1385)$ MB coupling

$$-it_{\Sigma^*i} = c_i \frac{12}{5} \frac{D+F}{2f} \boldsymbol{S} \cdot \boldsymbol{k}_i$$

4. Form factor

$$F_f(k_1) = \frac{\Lambda^2 - m_K^2}{\Lambda^2 - (k_1)^2}$$

- Difference among charged states
 -> when summed up, this term vanishes
- No p-wave contribution
 -> I=1 s-wave amplitude

Summary and conclusions 1

We study the structure of $\Lambda(1405)$ using the chiral unitary model.

There are two poles of the scattering amplitude around nominal Λ(1405).
 Pole 1 (1426+16i) : strongly couples to KN state Pole 2 (1390+66i) : strongly couples to πΣ state

b By observing the charged $\pi\Sigma$ states in the $\gamma p \rightarrow K^*\Lambda(1405)$ reaction, it is possible to isolate higher energy pole.

Summary and conclusions 2

If we observe neutral $\pi\Sigma$ state, clear I=0 distribution is obtained.

Combining three πΣ states, we can also study the s-wave l=1 amplitude, where the existence of another pole is argued.

T. Hyodo, et al, nucl-th/0401051

http://www.rcnp.osaka-u.ac.jp/~hyodo/

