

Frontiers of science at SACLA

Yuichi Inubushi

Japan Synchrotron Radiation Research Institute

Brief introduction of SPring-8

Current status of SACLA

Generation of intense XFEL pulses

Applications of intense XFEL pulses

Combination of XFEL and high-power laser

Summary

Brief introduction of SPring-8

Current status of SACLA

Generation of intense XFEL pulses

Application of intense XFEL pulses

Combination of XFEL and high-power laser

Summary

SPring-8: 3rd gen. synchrotron facility Various research fields (nano, green, life ...) Open worldwide

User operation: 1997~ Diameter: 400 m 57 beamlines

Beamline map

Application fields and achievements of SPring-8

Development of fuel-Development of X-ray efficient tires using 3D microscope enabling measurement intracellular 3D imaging technique 500 nm Structural Analysis of 論切り像 Human Hair for development of Material science functional shampoo Industrial Life science applications Structural elucidation of Flucidation of anti-caries core protein complex in mechanism of chewing gum photosynthesis SPring-8 Earth-Planetary Archeology science Material investigation of Sankaku-Earth's internal environment buchi Shinjukyo (ancient mirror) reproduced by fluorescent X-ray analysis Two-layer convection in outer liquid core of earth suggested Materials identified using pieces from Analysis of microparticles old wooden surface brought from Asteroid Itokawa CT image (8 keV) by Hayabusa

Industrial applications: Molecular Design for Energy Saving Tire

President Ikeda presents new energy saving tire. 1st Dec. 2011

Achieving Improvement 6%: fuel efficiency 39 %: traction performance!

"EnerSave" Premium Performance

Existing Tire

Lower Energy Loss

Brief introduction of SPring-8

Current status of SACLA

Generation of intense XFEL pulses

Application of intense XFEL pulses

Combination of XFEL and high-power laser

Summary

SACLA

SPring-8 Angstrom Compact free electron Laser

First compact XFEL Construction: 2006~2010 User operation: March 2012~

accelerator hall (~ 400 m)

undulator hall (~ 200 m)

experimental hall (~ 60 m

June, 2011 First Lasing

XFELs in the world

Comparison

	European XFEL	SACLA	LCLS
Length	3.3 km	700 m	~ 2 km
Beam energy	17 GeV	8 GeV	14 GeV
Wavele ngth	0.085 nm	0.06 nm	0.12 nm
Cost	900M Euro	370 M\$	600 M\$
Operati on	2017	2011	2009
	Superconducting technology High rep rate High pulse energy	First compact XFEL Short wavelength (sub-Å) Short-pulse operation (~ 10 fs)	First XFEL facility using existing linac High pulse energy

SACLA accelerator and beamlines (2017~)

Performance

	BL3	BL2	BL1
Photon energy	4~15 keV	4~15 keV	40 ~ 150 eV
Bandwidth(<i>△E/E</i>)	< 5x10 ⁻³	< 5x10 ⁻³	~ 0.01
Pulse energy	~ 500 μJ @10keV	~ 400 μJ @10keV	~ 90 µJ@ 100 eV
Photon number (/pulse)	> 10 ¹¹ @ 10 keV	> 10 ¹¹ @ 10 keV	> 10 ¹² @ 100 eV
Pulse duration	< 10 fs	< 10 fs	< 1 ps
Peak power	> 50GW	> 40GW	> 100 MW
Repetition rate	30Hz (60Hz: Single be	30Hz amline operation)	60Hz

Profile

FWHM: ~300 μm 10 keV (BL3)

Spectrum

9 keV (BL3)

Y. Inubushi, *et al.*, *PRL* **109**, 144801 (2012) *Appl. Sci.* **7**, 584 (2017)

Experimental hall

XFEL sciences

Brief introduction of SPring-8

Current status of SACLA

Generation of intense XFEL pulses

Application of intense XFEL pulses

Combination of XFEL and high-power laser

Summary

Intense XFEL pulses has opened new sciences

Application of intense X-ray source as a pumping source

This is a new experimental scheme, which has opened by XFEL.

Single-shot spectrometer with multilayer mirror

Pulse duration and longitudinal mode number

1-µm focusing system

~10¹⁸ W/cm²

H. Yumoto, et al., Nature Photonics 7, 43 (2013)

2-stage focusing system

~10²⁰ W/cm²

H. Mimura, et al., Nature Communications 5, 3539 (2014).

Pulse energy:

- Pulse duration:
- Bandwidth:
- Peak power:
- Intensity:

- 500 μJ @10keV (Throughput depends on optics)
- ~ 8 fs ~ 40 eV
- ~ 50 GW
- ~ 10^{14} W/cm² (300 μ m ϕ , raw beam)
- ~ 10^{18} W/cm² (1 μ m ϕ)
- ~ 10²⁰ W/cm² (50 nm \phi)

2-color double-pulse XFEL

Brief introduction of SPring-8

Current status of SACLA

Generation of intense XFEL pulses

Applications of intense XFEL pulses

Combination of XFEL and high-power laser

Summary

Applications of intense XFEL pulses

Interaction of intense XFEL pulses with matter

- Low ponderomotive force ($\propto \sqrt{\hbar^2}$) due to short wavelength Penetration to matters (Cut-off density: ~10²⁹ cm⁻³) Ionization and excitation of inner-shell electrons due to high photon energy 18 XFEL photon energy 2 He 4~15keV С в Ν Be 0 Ne 12 20 24 25 26 28 29 30 31 32 33 corresponding to transition Sc Ge Ca Cu Zn Ga energy of inner-shell electrons 48 49 50 51 52 Rh Pd Ag Cd Мо Тс Ru Rb Sr Zr Nb In Sn Sb Те Xe

XFEL photon density(10keV, Cu sample)

XFEL beam size	Intensity(W/cm ²)	Absorbed photon density (cm ⁻³)
Un-focus(300μmφ)	~ 10 ¹⁴	~10 ¹⁷ (<< <i>n</i> _{Cu})
1-μ <mark>m focus</mark>	~10 ¹⁸	~10 ²² (< <i>n</i> _{Cu})
100-nm focus	~10 ²⁰	$\sim 10^{23}$ (> $n_{\rm Cu}$)
Cross section of K-shell >> Lshell Almost all atoms become "core-hole at		of K-shell >> Lshell ms become "core-hole atoms".

LETTER

446 | NATURE | VOL 524 | 27 AUGUST 2015

Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser

Hitoki Yoneda^{1,2}, Yuichi Inubushi^{2,3}, Kazunori Nagamine¹, Yurina Michine¹, Haruhiko Ohashi^{2,3}, Hirokatsu Yumoto³, Kazuto Yamauchi^{2,4}, Hidekazu Mimura^{2,5}, Hikaru Kitamura⁶, Tetsuo Katayama³, Tetsuya Ishikawa² & Makina Yabashi²

Intense XFEL create a lot of core-hole atoms. Then, K α emission becomes laser via stimulated emission process.

Weak X rays

Intense XFEL

Incidence of X rays

Intense XFEL create a lot of core-hole atoms. Then, K α emission becomes laser via stimulated emission process.

Weak X rays

Intense XFEL

Creation of core-hole atoms

Intense XFEL create a lot of core-hole atoms. Then, K α emission becomes laser via stimulated emission process.

Intense XFEL

Intense XFEL create a lot of core-hole atoms. Then, K α emission becomes laser via stimulated emission process.

Intense XFEL create a lot of core-hole atoms. Then, K α emission becomes laser via stimulated emission process.

Intense XFEL

Creation of core-hole atoms

⇒ Population inversion

Intense XFEL create a lot of core-hole atoms. Then, K α emission becomes laser via stimulated emission process.

Intense XFEL

 $\label{eq:Kalaser} \textbf{K} \alpha \text{ laser} \\ \textbf{via stimulated emission process} \\$

First hard x-ray laser using atomic level

Seeding in hard x-ray region

Pump creation of core-hole atoms (9keV)

Seed

Same photon energy of $K\alpha(8keV)$

Incidence of two-color XFEL

Amplification of seed pulse

Hard x-ray seeding using 2-color XFEL

Hard x-ray seeding using 2-color XFEL

First hard x-ray seeding

Photon-Photon scattering

Exploring unknown field by measurement of photon-photon scattering

Verification of Quantum electrodynamics (QED)

T. Inada, et al., Phys. Lett. B, 732, 356-359 (2014).

Experimental setup

Result

Although the signal could not be detected, the new point could be plotted.

But, the point is still 20 order far from the QED theory.

Brief introduction of SPring-8

Current status of SACLA

Generation of intense XFEL pulses

Application of intense XFEL pulses

Combination of XFEL and high-power laser

Summary

HEDS (High Energy Density Science) experimental station at SACLA

SACLA Experimental Hall

SACLA - SPring-8 Experimental Facility

	40 TW Laser	500 TW Laser x2	Long Pulse Laser
Status	Operational	Under Commissioning	Operational
Pulse Energy	~1 J	~10 J	~ 10 J (to be upgraded)
Pulse Duration	~25 fs	~25 fs	~4 ns
Max. Rep. Rate	10 Hz	1 Hz	0.1 Hz
SACLA EH	EH5	EH6	EH5

TERMES

In collaboration with Harima Center for Photon Sciences, Osaka Univ. (Prof. R. Kodama)

Dynamic behavior of matter under high pressure is one of hot topics in HEDS

Above experiments were carried out with ~1 J, sub-ns laser. (up to a few tens of GPa)

→ Long pulse laser (~10 J, ns) has been installed.

Development of 500-TW laser experimental system(EH6)

Current status of 500 TW laser

Laser parameters

- ✓ Pulse energy: 12.5 J
- Peak power: 500 TW
- ✓ Wavelength: 800 nm

Duration: 25 fs

Beam size: ϕ 120 mm with Top Hat

✓ Contrast: 10⁻¹⁰@−100 ps, 10⁻⁸@−30 ps

Now, only 1 beam is available.

Timing jitter between XFEL and 500 TW laser

Experimental chamber and diagnostics

- Stable user operation of SACLA produced exciting results in wide scientific fields.
- Intense XFEL pulses, which is one of features of SACLA, has opened new scientific field.
- User operation of combination of high power laser (500 TW laser) and XFEL will start in June. This experimental scheme is expected to produce many interesting results.

Acknowledgements

XFEL R&D Division, RIKEN SPring-8 Center/JASRI

Especially,

Makina Yabashi, Kensuke Tono, Tadashi Togashi, Tetsuo Katayama, Shigeki Owada, Toshiki Yabuuchi, Akira Kon, Ichiro Inoue, Taito Osaka, Yuya Kubota, Takaki Hatsui, Yasumasa Joti, Togo Kudo, Takashi Kameshima, Kyo Nakajima, Hiroaki Kimura, Hiromitsu Tomizawa, Haruhiko Ohashi, Hirokatsu Yumoto, Takahisa Koyama, Kenji Tamasaku, Takahiro Inagaki, Kazuaki Togawa, Takashi Tanaka, Toru Hara, Mitsuhiro Yamaga, Hitoshi Tanaka, Tetsuya Ishikawa

Osaka University Kazuto Yamauchi, Yasuhisa Sano, Satoshi Matsuyama, Takashi Hirano, Jangwoo Kim (PAL)

The University of Tokyo Hidekazu Mimura

The University of Electro-Communications

Hitoki Yoneda

Thank you for your kind attention!