

Conceptual Design of a Compact Accelerator-Based Neutron Generator for Multi-BNCT System

KOAY HUI WEN (Accelerator Group)

Research Center for Nuclear Physics (RCNP)

Osaka University

IPC SPRING-8 Field Trip

Contents

- 1. Introduction
- 2. Aim
- 3. Neutron Generator
 - Target system
 - Beam Shaping Assembly (BSA)
- 4. Figure-of-Merit (FOM)
- 5. Experimental Verification
- 6. Conclusion
- 7. Future work

Contents

- 1. Introduction
- 2. Aim
- 3. Neutron Generator
 - Target system
 - Beam Shaping Assembly (BSA)
- 4. Figure-of-Merit (FOM)
- 5. Experimental Verification
- 6. Conclusion
- 7. Future work

Accelerator-based BNCT (AB-BNCT)

	Facility	E _p (MeV)	l (mA)	Target	Blistering	Activatio	n Port	Neutron energy control
High I	National Cancer Center, Japan (NCC)	2.5	20	Li	Yes	Low	Single	Fixed spectrum
Low E _p	Nagoya Univ.	2.8	15	Li	Yes	Low	Single	Fixed spectrum
	iBNCT	8	5	Be	Yes	Low	Single	Fixed spectrum
High E _p	CBENS	30	1	Ве	No	High	Single	Fixed spectrum
				f	Limits the bea current, whic urther limits neutron yiel	am ch the d	Long irradiation time limits the number of treatment available daily	Different therapeutic efficacies of cancers at various depths 20/03/201

Aim

To propose a compact accelerator-based neutron generator for <u>multi-BNCT</u>

	Facility	E _p (MeV)	l (mA)	Target	Blistering	Activation	Port	Neutron energy control
High I	National Cancer Center, Japan (NCC)	2.5	20	Li	Yes	Low	Single	Fixed spectrum
Low E _p	Nagoya Univ.	2.8	15	Li	Yes	Low	Single	Fixed spectrum
	iBNCT	8	5	Ве	Yes	Low	Single	Fixed spectrum
High E _p	CBENS	30	1	Ве	No	High	Single	Fixed spectrum
Low I	This study	50	0.5	W	No	High	Multiple	Controllable
				Ļ				•
				Curren	it			Future insight
								20/03/201

1. Introduction

2. Aim

- 3. Neutron Generator
 - Target system
 - Beam Shaping Assembly (BSA)
- 4. Figure-of-Merit (FOM)
- 5. Experimental Verification
- 6. Conclusion
- 7. Future work

3.0 Moderator Assembly

Ideal BNCT neutron beam:

- 1. High epithermal neutron $(0.5 \text{ eV} \le E_n \le 10 \text{ keV})$
- 2. Low thermal neutron $(E_n < 0.5 \text{ eV})$
- **3.** Low fast neutron $(E_n > 10 \text{ keV})$
- 4. Low gamma component

Moderator material estimation using ME

Moderator Selection:

- 1. High epithermal neutron
- 2. Low thermal neutron
- 3. Low fast neutron
- 4. Low gamma component

HIGHER IS BETTER!

Moderating efficiency, $ME\left(\frac{E_{fast}}{E_{epi}}\right) = \frac{\sigma_s(E_{fast})}{\sigma_s(E_{epi})}$

 $\sigma_s(E_{fast}) = \sigma \text{ of } (n, n') \text{ for } E_n > 10 \text{ keV}$

 $\sigma_s(E_{epi}) = \sigma \text{ of } (n, n') \text{ for } 0.5 \ eV \le E_n \le 10 \ keV$

	А	ME	ME	
Element		(10 MeV)	(100 keV)	
		10 keV)	10 keV)	
Η	1	0.049	0.664	
D	2	0.273	0.947	
\mathbf{C}	12	0.140	0.938	
Ο	16	0.198	0.954	
\mathbf{F}	19	0.287	6.627	
Al	27	0.615	4.832	
Fe	56	0.378	0.851	
Ni	58	0.346	0.669	
Cu	63	0.034	0.049	
Pb	208	0.218	0.873	

- 1. Introduction
- 2. Aim
- 3. Neutron Generator
 - Target system
 - Beam Shaping Assembly (BSA)
- 4. Figure-of-Merit (FOM)
- 5. Experimental Verification
- 6. Conclusion
- 7. Future work

4.0 Figure-of-Merit (FOM)

Neutron spectrum at the center of aperture

Free beam parameters at aperture

Contents

- 1. Introduction
- 2. Aim
- 3. Neutron Generator
 - Target system
 - Beam Shaping Assembly (BSA)
- 4. Figure-of-Merit (FOM)
- 5. Experimental Verification (With and without a test moderator)
- 6. Conclusion
- 7. Future work

5.0 Experimental verification of angular distribution of fast neutron emitted from W target

- Energy: 53 MeV
- Particle: Proton
- Target: W (0.2x20x20) mm³
- Experiment hall: Neutron experimental hall (N0 course)
- Aim: Verify the angular neutron yield from W target calculated by PHITS
- Method: Neutron Time-offlight (TOF) (10 m length)

20/03/2018

• Detector: NE213 liquid scintillator

Comparison of PHITS and Experiments

5.0 Experimental verification of moderated neutron energy spectra

- Energy: 53 MeV
- Particle: Proton
- Target: W (0.2x20x20) mm³
- Experiment hall: East experimental hall (ES course) •
- Aim: Verify the moderated neutron yield from a test moderator
- Method: Neutron Time-of-flight (TOF) (1 m length)

20/03/2018

• Detector: ⁶Li glass scintillator

PHS Discrimination and TOF background cut

6.0 Conclusion

- Neutron generator by using W target at 50 MeV can provide sufficient <u>epithermal neutron flux</u> of <u>2x10⁹n/cm²/s</u> at <u>4 ports</u> with a <u>SATISFACTORY</u> beam quality.
- The <u>integrated angular neutron yield</u> of W target <u>agrees</u> with <u>experiment</u>. This suggests that PHITS is <u>reliable</u> in predicting the primary neutron production from W.
- Experiment with <u>a test moderator</u> shows discrepancy with calculations. It should be <u>repeated</u> to confirm all the neutron transport calculations done.

Thank you!!!

7.0 Future work

- 1. Perform an experiment with the <u>real configuration</u> to verify the performance of this neutron generator using <u>in-phantom dose measurement</u>.
- 2. Development of <u>variable neutron spectra</u> at multiple neutron ports.
- 3. For <u>clinical</u> implementations, the following <u>conditions</u> should be <u>fulfilled</u>:
 - W target should be replaced at least monthly to reduce the accumulated activation and radiation damage.
 - The activated W target shall be replaced remotely by a robot and kept in a fully sealed room or container to avoid any leakage of activated dose.
 - The use of a special beam irradiation system such as beam scanning, broadening and target rotating system to ensure an even heat deposition onto target
 - A proper shutter system or shield when it is in off-line mode to shield activated radiation in the treatment room.

Pulse Shape Discrimination

Target and BSA Activation

One material study by PHITS

Two materials study by PHITS

Sequential study by PHITS

Sequence	Epithermal fluence	Fast neutron dose	Thermal-to-total-
	$(\times 10^{-7} \text{ n/cm}^2/\text{proton})$	$(\times 10^{-13} \text{ Gy cm}^2/\text{epi-n})$	neutron ratio
$\mathrm{Fe} \to \mathrm{AlF}_3 \to \mathrm{Tef}$	$4.78 {\pm} 0.25$	$1.80{\pm}0.34$	$0.157{\pm}0.012$
${\rm Fe} \to {\rm Tef} \to {\rm AlF}_3$	$4.52 {\pm} 0.24$	$3.63 {\pm} 0.69$	$0.139{\pm}0.012$
$\mathrm{AlF}_3 \to \mathrm{Fe} \to \mathrm{Tef}$	$0.75 {\pm} 0.10$	$42.8{\pm}10.0$	$0.009 {\pm} 0.003$
$\mathrm{AlF}_3 \to \mathrm{Tef} \to \mathrm{Fe}$	$2.57 {\pm} 0.16$	$8.90 {\pm} 3.77$	$0.317 {\pm} 0.026$
${\rm Tef} \to {\rm Fe} \to {\rm AlF}_3$	$4.52 {\pm} 0.25$	$2.68 {\pm} 0.49$	$0.119{\pm}0.010$
${\rm Tef} \to {\rm AlF}_3 \to {\rm Fe}$	$0.62 {\pm} 0.09$	$58.4{\pm}13.6$	0

3.0 Gamma shield

Systematic Error Estimation

Error source	Error $(\%)$
Solid angle	1.2
Incident proton beam current	< 10
Gamma contamination	<2
Detector efficiency	10
Scattering of neutrons in air	<3
${}^{1}\mathrm{H}(\mathrm{n},\gamma){}^{2}\mathrm{H}$ reaction in NE213	<1
Total systematic error	<27.2

3.0 Reflector

Beam profile (port 1)

At 5 cm from apertures [R = 10 cm]

3.0 Target Cooling - Thermal Analysis

Power: 25kW (50 MeV 500 μA) W dimension: Φ 100 mm ; thickness 2.4 mm Cu dimension: : Φ 100 mm ; thickness 10 mm Tube dimension: Inner Φ 3 mm (9 tubes)

<u>3.0 Target Material</u> Advantages: 10⁰ Advantages: 1) Low activation 10^{-1} 1) High melting point [n/proton] Low energy 2) Low fast 2) No blistering 10⁻² **High current** neutron contamination 3) High neutron yield D/T/Li/Be 10⁻³ ultiplicity 10^{-4} **High energy** Disadvantages: **Disadvantages:** 10⁻⁵ Low current 1) High surface heat 1) Target activation deposition leads to **Heavy target**

target blistering

2) Low melting point
(Li)
3) Low neutron yield

10⁻⁴
 10⁻⁵
 High ene
 Low curred
 Heavy tar Ta/W
 for a high neutron yield for multi-BNCT!
 Demberding log Energy (Mac)

Bombarding Ion Energy (MeV)

 Target activation causes severe γ radiation

2) High fast neutron contamination

10³

<u> 3.0 FOM – Dose calculations</u>

(AD means depth in phantom where the tumour dose = maximum normal dose)

20/03/2018

*Using neutron spectra at 5cm (saving computational time)

⁶Li (n,α) data discrimination

Corresponding Time-of-flight Spectrum (TOF)

Only neutron data < 1 MeV is analyzed!