Nuclear Force from Lattice QCD

T. Hatsuda (Nishina Center, RIKEN)

Advanced Institute for Computational Science (AICS), RIKEN 10 PFlops supercomputer KEI "京" (full operation started on Sep.28, 2012)

http://www.aics.riken.jp/en/

Five "strategic" programs (FY 2010-2015)

Life and Medicine
 New Materials
 Engineering
 Particle, Nuclear and Astrophysics

Project 1: Baryon-Baryon interaction from lattice QCD simulations at physical point
Project 2: Large scale quantum many-body calculation of nuclei and its applications
Project 3: Realistic simulation of supernova explosion and black-hole formation
Project 4: Large scale simulation of first generation of stars and galaxies

Physical point simulation started : 96⁴ lattice, a=0.1fm, L=9.6fm, m_{π} =135MeV

Quantum Chromo Dynamics

$$\mathcal{L} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \bar{q}\gamma^\mu(i\partial_\mu - \mathbf{g}t^a A^a_\mu)q - \mathbf{m}\bar{q}q$$

Nambu (1966)

What can be done

- hadron properties & interactions
- hot plasma in equilibrium

What is difficult

- cold plasma
- phenomena far from equilibrium

$$Z = \int [dU] [dqd\bar{q}] \exp\left[-\int d\tau d^3 x \mathcal{L}_{\rm E}\right]$$

Monte Carlo method Observable =O(g, m, a, L)

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \bar{q} \gamma^\mu (i\partial_\mu - \mathbf{g} t^a A^a_\mu) q - \mathbf{m} \bar{q} q$$
$$G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + \mathbf{g} f_{abc} A^b_\mu A^c_\nu$$

Running masses: m_q(Q)

quark masses (from lattice QCD)	[MeV] (MS-bar @ 2GeV)
m _u	2.19(15)
m _d	4.67(20)
m _s	94(3)
FLAG working group, arXiv:1011.4408 [hep-lat]	

Running coupling: $\alpha_s(Q)=g^2/4\pi$

Bethke, Eur. Phys. J C(2009)64:689 →

Hadron masses @ 2009 $m_{\pi} > 156 \text{ MeV}$

Hadron masses @ 2010 $m_{\pi} = 135 \text{ MeV}$

PACS-CS Coll.: Phys. Rev.D81 (2010) 074503

PACS-CS Collaboration, Phys.Rev.D79 (2009)034503

Baryon force: From phenomenology to 1st principle

Multi-hadrons on the Lattice

Methods to extract NN interaction from LQCD

[1] <u>Temporal</u> correlation: $E_{NN}(L) \rightarrow NN$ phase shift, binding energy

$$\frac{2\mathcal{Z}_{00}(1,q)}{L\pi^{1/2}} = k \cot \delta_0(k)$$

Luscher, Nucl. Phys. B354 (1991) 531

- quenched QCD: CP-PACS Coll. (1995)
- full QCD: NPLQCD Coll. (2006-)
- bound nuclei
- Yamazaki et al., (2010-)

[2] <u>Spatial</u> correlation : BS wave function → NN potential → observables

$$(E - H_0)\phi(\mathbf{r}) = \int U(\mathbf{r}, \mathbf{r}')\phi(\mathbf{r}')d\mathbf{r}'$$

half off-shell T-matrix

- NN system (quenched QCD) :
- NN, YN systems (full QCD):
- Space-time hybrid method (full QCD):

Ishii, Aoki & T.H., PRL 99, 022001 (2007). HAL QCD Coll. (2008-) D): HAL QCD Coll. , PLB (2012) HAL QCD Method

(i) Take your favorite interpolating operator

e.g.
$$N(x) = \epsilon_{abc}q^a(x)q^b(x)q^c(x)$$

← observables do not depend on the choice Haag, Nishijima, Zimmermann (1958)

(ii) Calculate the equal-time BS amplitude

$$\phi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) | 6q \rangle$$

(iii) Define the potential

$$(E - H_0)\phi(\vec{r}) = \int U(r, \vec{r'})\phi(\vec{r'})d^3r'$$

(iv) Derivative expansion

$$U(\vec{r},\vec{r'}) = V(\vec{r},\nabla)\delta^3(\vec{r}-\vec{r'})$$

$$V(\vec{r}, \nabla) = V_{\rm C}(r) + S_{12}V_{\rm T}(r) + \vec{L} \cdot \vec{S} V_{\rm LS}(r) + \{V_{\rm D}(r), \nabla^2\} + \cdots$$

Okubo-Marshak (1958)

"Potential" is <u>not an observable</u> but is a <u>nice tool</u> to calculate observables
 "Potential" is <u>volume insensitive</u> (i.e. Lattice Friendly)

Central potential in (2+1)-flavor QCD

 \Rightarrow Physical point simulations (m_n=135MeV, L=9.6 fm) at KEI computer

BB forces from LQCD

$$8 \times 8 = \frac{27 + 8s + 1}{\text{Symmetric}} + \frac{10^* + 10 + 8a}{\text{Anti-symmetric}}$$

- Physical origin of the short distance NN repulsion ?
- Fate of the H-dibaryon ?
- Effect of the SU(3) breaking?

Lattice BB wave functions (flavor SU(3) limit)

Iwasaki + clover (CP-PACS/JLQCD config.) L=1.9 fm, a=0.12 fm, 16^3x32 m_{π}=835 MeV, m_B=1752 MeV

HAL QCD Coll. Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

Short range BB int. ⇔ Quark Pauli principle

1 : allowed, 27 : partially blocked, 8_s : blocked

(Oka, Yazaki, Toki,)

IHAL QCD Coll. Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

Repulsive core in NN channel

Growing NN tensor force

NN phase shifts in the SU(3) symmetric world

Stronger attraction in the deuteron channel

HAL QCD Coll., Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

Just for fun: Neutron star from NN potential in flavor SU(3) limit

EOS with Lattice NN force by BHF calculation \rightarrow M-R relation by TOV equation

Inoue et al. [HAL QCD Coll.] (2012)

Just for fun: Neutron star from NN potential in flavor SU(3) limit

EOS with Lattice NN force by BHF calculation \rightarrow M-R relation by TOV equation

Inoue et al. [HAL QCD Coll.] (2012)

3N force (spin-isospin independent part) from LQCD

$$\psi_{3N}(\vec{r},\vec{\rho}) \equiv \langle 0|N(\vec{x}_1)N(\vec{x}_2)N(\vec{x}_3)|E_{3N}\rangle, \\ \left[-\frac{1}{2\mu_r}\nabla_r^2 - \frac{1}{2\mu_\rho}\nabla_\rho^2 + \sum_{i< j}V_{2N}(\vec{r}_{ij}) + V_{3NF}(\vec{r},\vec{\rho})\right]\psi_{3N}(\vec{r},\vec{\rho}) = E_{3N}\psi_{3N}(\vec{r},\vec{\rho}),$$

T. Doi et al [HAL QCD Coll.], arXiv:1106.2276[hep-lat]

r₂ [fm]

2.5

2

BB potentials (flavor SU(3) limit)

IHAL QCD Coll. Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28

Repulsive core in NN channel

Attractive core in H channel

Phys. Rev. Lett. 106 (2011) 162002 Nucl. Phys. A881 (2012) 28 SU(3) breaking: coupled channel LQCD

Sasaki et al. [HAL QCD Coll.] (2012)

$$\left(k_n^2 + \nabla^2\right)\phi_n^{\alpha}(\vec{r}, t) = \int U(\vec{r}, \vec{r}')^{\alpha\beta}\phi_n^{\beta}(\vec{r}', t)d^3r'$$

Example: S=-1, ${}^{3}S_{1}$, I=1/2 (m_{π}/m_K=0.89, 0.8)</sub>

PACS-CS (2+1)-flavor config. L=2.9 fm

"Summary"

- LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions
- 2. LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD
- Physical point simulations with a large volume (L=9.6 fm) is started at KEI computer
- Direct comparison of YKU (Yamazaki-Kuramashi-Ukawa) approach and HAL QCD would become soon possible !

"Lattice Quantum Chromodynamical Approach to Nuclear Physics" [HAL QCD Collaboration] Progress of Theoretical and Experimental Physics, (2012) 01A105 http://www.oxfordjournals.org/our_journals/ptep/special_issue_a.html

- basic concepts of the non-local potential
- central, tensor, LS forces from lattice QCD
- coupled-channel YN, YY forces
- three-body force
- kaon-nucleon interaction
- going beyond the pion threshold

END

Multi-hadron Dilemma

Solution of the Dilemma : Interaction kernel (=non-local potential)

$$\phi_n(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) | n \rangle$$
$$(k_n^2 + \nabla^2) \phi_n(\vec{r}) = \int U(\vec{r}, \vec{r}') \phi_n(\vec{r}') d^3r'$$

 $\phi(\vec{r},t) = \sum \phi_n(\vec{r})e^{-E_n t}$

 $n < n_{th}$

Ishii, Aoki & Hatsuda, PRL 99 (2007) 022001 PTP 123 (2010) 89

Ishii et al. [HAL QCD Coll.], Phys.Lett. B712 (2012) 437

$$\left(-(\frac{1}{2}\partial_t)^2 - m_N^2 + \nabla^2\right)\phi(\vec{r}, t) = \int U(\vec{r}, \vec{r'})\phi(\vec{r'}, t)d^3r'$$

"Potential" is <u>not an observable</u> but is a <u>nice tool</u> to calculate observables
 "Potential" is <u>volume insensitive</u> (i.e. Lattice Friendly)