Importance of pion and The tensor optimized shell model

Hiroshi Toki
(RCNP, Osaka University)

In collaboration with
T. Myo (Osaka IT)
Y. Ogawa (RCNP)
K. Horii (RCNP)
K. Ikeda (RIKEN)
Pion is important in Nuclear Physics!

- Yukawa (1934) predicted pion (size) as a mediator of nuclear interaction to form nucleus
- Mayer-Jensen (1949) introduced shell model (Phenomenological) beginning of Nuclear Physics
- Nambu (1960) introduced the chiral symmetry and its breaking produced mass and the pion as pseudo-scalar particle
Challenge

• Describe nuclei from the first principle (pion)
• Construct nucleus using NN interaction
Pion is a pseudo-scalar particle (Nambu)

\[\vec{\sigma}_1 \cdot \vec{q} \frac{1}{m_\pi^2 + q^2} \vec{\sigma}_2 \cdot \vec{q} = \frac{1}{3} \left(\frac{q^2}{m_\pi^2 + q^2} S_{12}(\hat{q}) \right) + \frac{1}{3} \left(1 - \frac{m_\pi^2}{m_\pi^2 + q^2} \right) \vec{\sigma}_1 \cdot \vec{\sigma}_2 \]

\[= \frac{1}{3} \frac{q^2}{m_\pi^2 + q^2} S_{12}(\hat{q}) + \frac{1}{3} \left(1 - \frac{m_\pi^2}{m_\pi^2 + q^2} \right) \vec{\sigma}_1 \cdot \vec{\sigma}_2 \]

\[S_{12}(\hat{q}) = \sqrt{\frac{24\pi}{5}} \left[Y_2(\hat{q})[\sigma_1 \sigma_2]_2 \right]_0 \]

12.12.11
toki@pionrcnp
Deuteron (1\(^+\))

NN interaction

\[
\Psi_d = u(r)[Y_0(\hat{r}) \otimes \chi_1(\sigma_1 \sigma_2)]_{1M} + w(r)[Y_2(\hat{r}) \otimes \chi_1(\sigma_1 \sigma_2)]_{1M}
\]

S=1 and L=0 or 2
Deuteron \((1^+)\)

80% of attraction comes from tensor

D-wave component moves very fast

<table>
<thead>
<tr>
<th>Energy</th>
<th>(-2.24) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic</td>
<td>19.88</td>
</tr>
<tr>
<td>((SS))</td>
<td>11.31</td>
</tr>
<tr>
<td>((DD))</td>
<td>8.57</td>
</tr>
<tr>
<td>Central</td>
<td>(-4.46)</td>
</tr>
<tr>
<td>((SS))</td>
<td>(-3.96)</td>
</tr>
<tr>
<td>((DD))</td>
<td>(-0.50)</td>
</tr>
<tr>
<td>Tensorc</td>
<td>(-16.64)</td>
</tr>
<tr>
<td>((SD))</td>
<td>(-18.93)</td>
</tr>
<tr>
<td>((DD))</td>
<td>2.29</td>
</tr>
<tr>
<td>LS</td>
<td>(-1.02)</td>
</tr>
<tr>
<td>(P(D))</td>
<td>5.78 (%)</td>
</tr>
<tr>
<td>Radius</td>
<td>1.96 [fm]</td>
</tr>
<tr>
<td>((SS))</td>
<td>2.00 [fm]</td>
</tr>
<tr>
<td>((DD))</td>
<td>1.22 [fm]</td>
</tr>
</tbody>
</table>
BE = 5MeV for ^4He
Variational calculation of few body system with NN interaction

\[\langle \Psi | V_{\pi} | \Psi \rangle \sim 80\% \]

\[\langle \Psi | V_{NN} | \Psi \rangle \]

\[\Psi = \phi(r_{12})\phi(r_{23})...\phi(r_{ij}) \]

Heavy nuclei (Super model) Pion is key
How to handle tensor interaction in heavy nuclei

- Transition from relative S-wave to D-wave provides large attraction
- In shell model, this is achieved by taking 2p-2h state (Myo et al.)
- Tensor optimized shell model (TOSM)
 \[\Psi = C_0 \left\langle 0 \right| + \sum_{\alpha} C_{\alpha} \left| 2p - 2h : \alpha \right\rangle \]
- Short range correlation is treated by UCOM (Feldmeier et al.)
TOSM (+UCOM) with AV8’

\[\Psi = C_0 |0\rangle + \sum_{\alpha} C_{\alpha} |2p2h : \alpha\rangle \]

(Myo Toki Ikeda)

PTP 121 (2009)

Few body Calculation
(Kamda et al (2001))
Configurations in TOSM

particle states

Gaussian expansion

C₀

C₁

C₂

C₃

nlj

proton neutron

hole states

(harmonic oscillator basis)

Application to Hypernuclei by Umeya to investigate $\Delta N-\Sigma N$ coupling
$^{4-8}$He with TOSM+UCOM

- Excitation energies in MeV
- Bound state app.
- No continuum
- No V_{NNN}

Excitation energy spectra are reproduced well

T. Myo, A. Umeya, H. Toki, K. Ikeda
PRC84 (2011) 034315
We cannot treat the tensor interaction in HF space.

\[\langle 0 | S_{12} | 0 \rangle = 0 \]

\[S_{12} = \sqrt{\frac{24\pi}{5}} \left[Y_2(\hat{r}) \times [\sigma_1 \times \sigma_2]_2 \right]^{(0)}. \]

We improve Brueckner-Hartree-Fock theory
Comparison of BHF and EBHF

Hartree-Fock equations look very similar

BHF

\[
\langle 0 | T + G | 0 \rangle = \langle 0 | T + V | 0 \rangle - \sum_{\alpha\beta} \langle 0 | V | \alpha \rangle \langle \alpha | \frac{1}{H_{HF} - E_{HF}^h + V} | \beta \rangle \langle \alpha | V | 0 \rangle
\]

EBHF

\[
\langle 0 | H_{eff} | 0 \rangle = |C_0|^2 \langle 0 | T + V | 0 \rangle - |C_0|^2 \sum_{\alpha\beta} \langle 0 | V | \alpha \rangle \langle \alpha | \frac{1}{H - E} | \beta \rangle \langle \beta | V | 0 \rangle
\]
\[|\Psi\rangle = C_0 |0\rangle + \sum_{\alpha} C_{\alpha} |2p - 2h : \alpha\rangle \]

\[\langle \Psi | \Psi \rangle = |C_0|^2 + \sum_{\alpha} |C_{\alpha}|^2 = 1 \]

\[\langle \Psi | \hat{O} | \Psi \rangle = |C_0|^2 \langle 0 | \hat{O} | 0 \rangle + \sum_{\alpha \beta} C_{\alpha}^* C_{\beta} \langle \alpha | \hat{O} | \beta \rangle \]

Shell model

80~90%
Shell model

High momentum Component

TOSM wave function

Matrix element

Shell model

Tensor state

\[\text{Distribution} \]

\[300 \text{MeV} / c(k_F) \]

Momentum
Variational calculation of few body system with NN interaction

\[\langle \Psi | V_\pi | \Psi \rangle / \langle \Psi | V_{NN} | \Psi \rangle \approx 80\% \]

\[\Psi = \phi(r_{12}) \phi(r_{23}) ... \phi(r_{ij}) \]

Heavy nuclei (Super model)

Pion is key
Importance of delta

We treat delta explicitly for three body interaction.

NN channel NΔ channel ΔΔ channel

Two body potential including delta

→ Argonne delta model potential (AV28)

Three body interaction
Effect of delta in deuteron

Chart Details

- **Energy Levels**
 - AV14: 21.37 + 3.16
 - AV28: 8.90
 - AV14: 8.90
 - AV28: 8.90

- **Kinetic Energy**
 - AV14: 19.14
 - AV28: 19.14

- **Central Energy**
 - AV14: -1.91
 - AV28: -1.91

- **Energy**
 - AV14: -2.17
 - AV28: -2.33

- **Tensor Energy**
 - AV14: -18.80
 - AV28: -18.80

- **Table of Results**

<table>
<thead>
<tr>
<th>Deuteron 1^+</th>
<th>AV14</th>
<th>AV28</th>
</tr>
</thead>
<tbody>
<tr>
<td>L \cdot S</td>
<td>0.36</td>
<td>0.86</td>
</tr>
<tr>
<td>L^2</td>
<td>3.07</td>
<td>3.63</td>
</tr>
<tr>
<td>(L \cdot S)^2</td>
<td>-4.03</td>
<td>-4.14</td>
</tr>
<tr>
<td>P_{NN} [^3S_1] %</td>
<td>93.96</td>
<td>93.22</td>
</tr>
<tr>
<td>P_{NN} [^3D_1]</td>
<td>6.04</td>
<td>6.23</td>
</tr>
<tr>
<td>P_{\Delta\Delta} [^3S_1]</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>P_{\Delta\Delta} [^3D_1]</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>P_{\Delta\Delta} [^7D_1]</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>P_{\Delta\Delta} [^7G_1]</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Prior studies for nuclei with delta

No calculations for $A \geq 4$
Too many states are necessary.

$A=3$

1. Hannover group (Germany)
Bonn potential + single delta
2. Los Alamos group (Fadeev calculations)
AV28 potential \rightarrow Not enough binding for ^3H
Approximation: double Δ up to $L=2$

Wave function in deuteron

$$\Psi_{NN} = |^3S_1\rangle + |^3D_1\rangle$$
$$\Psi_{\Delta\Delta} = |^3S_1\rangle + |^3D_1\rangle + |^7D_1\rangle + |^7G_1\rangle$$ ← about 0.04 %
Results in 1Even channel

1E channel \(L=\text{even}, S=\text{even}, T=1 \)

<table>
<thead>
<tr>
<th>(J=0)</th>
<th>(d=1.70 \text{ fm})</th>
<th>no (N\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [MeV]</td>
<td>5.7</td>
<td>8.2</td>
</tr>
<tr>
<td>Kinetic</td>
<td>10.51 (NN=9.23)</td>
<td>9.51 (NN=9.30)</td>
</tr>
<tr>
<td>Central</td>
<td>0.90 (NN=0.70)</td>
<td>-0.12 (NN=-0.12)</td>
</tr>
<tr>
<td>Tensor</td>
<td>-7.92</td>
<td>-1.75</td>
</tr>
<tr>
<td>(L\cdot S)</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>(L^2)</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>((L\cdot S)^2)</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>(P_{NN}) ([^{1}S_0]) %</td>
<td>99.37</td>
<td>99.89</td>
</tr>
<tr>
<td>(P_{\Delta\Delta}) ([^{1}D_0])</td>
<td>0.01</td>
<td>0.007</td>
</tr>
<tr>
<td>(P_{\Delta\Delta}) ([^{5}D_0])</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>(P_{N\Delta}) ([^{5}D_0])</td>
<td>0.49</td>
<td>------</td>
</tr>
</tbody>
</table>

Odd channels

Delta contribution is about 1/5~1/10 in odd channels

\[
\Psi_{NN} = |^{1}S_0\rangle
\]
\[
\Psi_{\Delta\Delta} = |^{1}S_0\rangle + |^{5}D_0\rangle
\]
\[
\Psi_{N\Delta} = |^{5}D_0\rangle
\]
Delta with and without 7G_1
Pion (Tensor force) in finite nuclei

- Pion (Tensor force) is important in finite nuclei
- Tensor optimized shell model (TOSM) is used to treat the tensor force -- K computer
- Tensor force has a strong influence on the excitation spectra (TOSM)
- The wave function contains high momentum components
- Extended HF theory: BHF is reformulated
- Three body interaction by explicit treatment of delta
- Delta effect is very large