2012/2/22 RCNP

G-matrix folding potential による ハイパー核生成反応

Y. Yamamoto RIKEN Strangeness Nuclear Physics Laboratory

Proposed by Th.A. Rijken

Extended Soft-Core Model (ESC)

Two-meson exchange processes are treated explicitly

Meson-Baryon coupling constants are taken consistently with Quark-Pair Creation model

Quark-Pauli effect in ESC08 models

ESC core = pomeron + \omega to each other in all channels

Assuming "equal parts" of ESC and QM are similar to each other

Almost Pauli-forbidden states in [51] are taken into account by changing the pomeron strengths for the corresponding channels phenomenologically

 $g_P \longrightarrow factor * g_P$

Important also in ΞN channels

by Oka-Shimizu-Yazaki

	the isospin, spin sasis.
(S, I)	$V = aV_{[51]} + bV_{[33]}$
(0, 1)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(1, 0)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(0, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(1, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0, 1/2)	$V_{\Sigma\Sigma} = \frac{17}{18} V_{[51]} + \frac{1}{18} V_{[33]}$
(1, 1/2)	$V_{\Sigma\Sigma} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0, 3/2)	$V_{\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(1, 3/2)	$V_{\Sigma\Sigma} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]}$

Table III. $SU(6)_{fs}$ -contents of the various potentials on the isospin, spin basis. =

(S, I)	$V = aV_{[51]} + bV_{[33]}$
(0, 0)	$V_{\Lambda\Lambda,\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0,0)	$V_{\Xi N,\Xi N} = \frac{1}{3}V_{[51]} + \frac{2}{3}V_{[33]}$
(0, 0)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{11}{18}V_{[51]} + \frac{7}{18}V_{[33]}$
(0, 1)	$V_{\Xi N,\Xi N} = \frac{7}{9}V_{[51]} + \frac{2}{9}V_{[33]}$
(0,0)	$V_{\Sigma\Lambda,\Sigma\Lambda} = \frac{2}{3}V_{[51]} + \frac{1}{3}V_{[33]}$
(0, 2)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(1, 0)	$V_{\Xi N,\Xi N} = \frac{5}{9}V_{[51]} + \frac{4}{9}V_{[33]}$
(1, 1)	$V_{\Xi N,\Xi N} = \frac{17}{27} V_{[51]} + \frac{10}{27} V_{[33]}$
(1, 1)	$V_{\Sigma\Lambda,\Sigma\Lambda} = \frac{2}{3}V_{[51]} + \frac{1}{3}V_{[33]}$
(1,1)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{16}{27} V_{[51]} + \frac{11}{27} V_{[33]}$

Pauli-forbidden state in $V_{[51]}$ strengthen pomeron coupling $\Sigma^+ p({}^3S_1, T = 3/2), \Sigma N({}^1S_0, T = 1/2), \text{ and } \Xi N({}^1S_0, T = 1)$ ESC08a/b

QM result is taken into account most faithfully

1.06 $V_{NN} = (1 - a_{PB})V_P + a_{PB}V_P$ $\equiv V(POM) + V(PB),$ $V_{BB}(PB) = (w_{BB}[51]/w_{NN}[51]) \cdot V(PB).$

Quark-core and U_{Σ} / U_{Ξ} $\ \mbox{problem}$

Experimentally NSC89/97 ESC04a ESC04d	U _Σ repulsive attractive strongly attractive strongly attractive	U _E weakly attractive strongly repulsive weakly attractive strongly attractive	
ESC08a/b ESC08c	strongly repulsive moderately repulsive	strongly attractive weakly attractive Quark effect	-core

G-matrix approach to Hypernuclear systems

YN G-matrix interactions in nuclear matter

$$G_{cc0} = v_{cc0} + \sum_{c'} v_{cc'} \frac{Q_{y'}}{\omega - \epsilon_{B_1'} - \epsilon_{B_2'} + \Delta_{yy'}} G_{c'c_0}$$

$$c = (B_1B_2, T, L, S, J)$$

$$B_1B_2 = \Lambda N, \Sigma N \text{ and } \Xi N, \text{ etc.}$$

$$\Delta_{yy'} = M_{B_1} + M_{B_2} - M_{B_1'} - M_{B_2'}$$
Coordinate representation
$$u_{c_0c_1}(k; r) = \delta_{c_0c_1} j_L(kr) + 4\pi \sum_{c_2} \int_0^\infty F_{c_1}(r, r') V_{c_1c_2}(r') u_{c_0c_2}(k; r') r'^2 dr'$$

$$F_c(r,r') = \frac{1}{2\pi^2} \int_0^\infty \frac{\bar{Q}_y(k_F,q,\bar{K}_{y_0})j_L(qr)j_L(qr')\,q^2dq}{\omega - \left(\frac{\hbar^2}{2M_y}\bar{K}_{y_0}^2 + \frac{\hbar^2}{2\mu_y}q^2 + U_{B_1}(\bar{k}_{B_1}) + U_{B_2}(\bar{k}_{B_2}) + \Delta_{yy_0}\right)}$$

G-matrix interaction depends on K_F (or ρ)

Folding potentials derived from nuclear-matter G-matrix interaction G-matrix folding potential

 N-A & A-A scattering problem folding of G(r; ρ, E_{in}) → very successful many works including FSY papers
 Nuclear bound states with density-dependent interactions DDHF with G(r; ρ) ← G(r; ρ,ω) : ω determined self-consistently in nuclear matter

 Y-A bound states with G-matrix folding potential folding of G(r; ρ) ← G(r; ρ, E_Y) : E_Y determined self-consistently assuming k_Y=0 in nuclear matter ε_Y(k_y) = ^{ħ²k_Y²}/_{2M_Y} + U_Y(k_Y)

•Toward Y-A scattering problem folding of $G(r; \rho, E_{in})$

Coordinate-space G-matrix interaction

Effective local interaction

Averaging for $V(r)(u_L(k;r)/j_L(kr))$:

$$G_{L'S',LS}^{\mathcal{J}}(r) = \frac{\int k^2 dk W(k;k_{\Lambda}) j_{L'}(kr) j_L(kr) \sum_{c_1} Vc'c_1(r) u_{cc_1}(k;r)}{\int k^2 dk W(k;k_{\Lambda}) j_{L'}(kr) j_L(kr)}$$

Fitted in a Gaussian form

For instance, effective LS Interaction \mathcal{V}^{LS} is given by

$$\mathcal{V}^{LS}(r) = \frac{1}{2(L+1)} \left[-\frac{2L-1}{L} G_{L1,L1}^{L-1} - \frac{2L+1}{L(L+1)} G_{L1,L1}^{L} + \frac{2L+3}{L+1} G_{L1,L1}^{L+1} \right]$$

Gaussian-represented G-matrix interactions

$$G_{\Lambda N}(k_F; r) = P_+ G^{(+)}(k_F; r) + P_- G^{(-)}(k_F; r)$$

$$G^{(\pm)}(k_F; r) = G_0^{(\pm)}(k_F; r) + G_{\sigma\sigma}^{(\pm)}(k_F; r) \mathbf{s}_{\Lambda} \mathbf{s}_N$$

$$+ G_{LS}^{(\pm)}(r) \mathbf{L}(\mathbf{s}_{\Lambda} + \mathbf{s}_N) + G_{ALS}^{(\pm)}(r) \mathbf{L}(\mathbf{s}_{\Lambda} - \mathbf{s}_N) \} + G_T^{(\pm)}(r) S_{12}$$

where
$$P_{\pm} = 1/2 (1 \pm P_r)$$
,
 P_r being a space exchange operator
 $G^{(+)}$: even-state part $G^{(-)}$: odd-state part

Parametrized as (called $\mathbf{YNG})$

$$G_{0,\sigma\sigma}^{(\pm)}(k_F;r) = \sum_{i=1}^{3} (a_i + b_i k_F + c_i k_F^2) \exp(-r^2/\beta_i^2)$$

$$\mathbf{k}_F \text{ dependence}$$

$$k_F \text{ dependence of } G_{\sigma\sigma}^{(\pm)} \text{ is small, and}$$
those of LS, ALS and tensor terms are negligible

G-matrix folding model

$$\begin{split} U_{Y}(\mathbf{r},\mathbf{r}') &= U_{dr} + U_{ex} \\ U_{dr} &= \delta(\mathbf{r} - \mathbf{r}') \int d\mathbf{r}'' \rho(\mathbf{r}'') V_{dr}(|\mathbf{r} - \mathbf{r}''|; \langle k_F \rangle) \\ U_{ex} &= \rho(\mathbf{r},\mathbf{r}') V_{ex}(|\mathbf{r} - \mathbf{r}'|; \langle k_F \rangle) \quad \text{G-matrix interactions } \mathbf{G}(\mathbf{r};\mathbf{k}_F) \\ V_{dr} &= \frac{1}{2(2t_Y + 1)(2s_Y + 1)} \sum_{TS} (2T + 1)(2S + 1) [G_{TS}^{(+)} + G_{TS}^{(-)}] \\ V_{ex} &= \frac{1}{2(2t_Y + 1)(2s_Y + 1)} \sum_{TS} (2T + 1)(2S + 1) [G_{TS}^{(+)} - G_{TS}^{(-)}] \\ \hline \mathbf{Averaged} - \mathbf{k}_F \quad \text{Approximation} \\ \langle \rho \rangle &= \langle \phi_Y(r) | \rho(r) | \phi_Y(r) \rangle \\ \langle k_F \rangle &= (1.5\pi^2 \langle \rho \rangle)^{1/3} \end{split}$$

A simple treatment $\implies k_F$ is an adjustable parameter

Mixed density $\rho(\mathbf{r}_1, \mathbf{r}_2) = \sum_j \varphi_j^*(\mathbf{r}_1) \varphi_j(\mathbf{r}_2)$ obtained from core w.f. H.O.w.f SkHF w.f. etc.

$U_{\Lambda}(\rho_0)$ and partial-wave contributions

	${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Λ}	$U_{\sigma\sigma}$
ESC08a	-12.5	-24.1	2.4	0.0	1.2	-3.3	-1.5	-37.8	1.12
$\mathrm{ESC08b}$	-12.1	-22.4	2.1	-0.2	1.3	-3.8	-1.6	-36.7	1.17
$\mathrm{ESC08c}$	-12.6	-26.3	2.4	0.2	1.4	-2.7	-1.5	-39.1	0.96
NSC97e	-11.9	-26.1	1.7	0.4	2.6	-1.2	-1.1	-35.8	0.81
NSC97f	-13.2	-23.5	2.0	0.3	3.3	-0.8	-1.2	-33.1	1.36

CONr = continuous choice & ω -rearrangement

 $U_{\sigma\sigma} = (U({}^{3}S_{1}) - 3U({}^{1}S_{0}))/12$

spin-spin interactions in ESC08a/b/c between NSC97e and NSC97f

 $^{89}_{\Lambda}$ Y

0g_{9/2}

Width = 1.65 MeV

 $\langle k_F \rangle$ is determined self-consistently for each state(ADA) In the case of taking constant $\langle k_F \rangle$, level spacing cannot be reproduced !!!

 $U_{\Lambda}(\rho_0) = -37 \text{ MeV for G-matrix interactions}$ reproducing the observed spectra of $^{89}\Lambda Y$ differently from $U_{WS} = -30 \text{ MeV}$

Self-consistent treatment of the k_F -dependence is essential in order to reproduce the spectrum Its main origin is from $\Lambda N - \Sigma N$ tensor coupling terms

Hypernuclear Production with GFM --- (π ,K) reaction

$$\frac{d^2\sigma}{dE_K d\Omega} = |t_{K\Lambda,\pi N}|^2 \frac{p_K E_K}{(2\pi)^2 v_\pi} \sum_f \delta(E_K + E_f - E_\pi - E_i) |\langle f|\hat{F}|i\rangle|^2$$

$$\hat{F} = \int d\mathbf{r} F(\mathbf{r}) \psi_{\Lambda}^{+}(\mathbf{r}) \psi_{N}(\mathbf{r})$$

$$F(\mathbf{r}) = \chi_{K}^{(-)*}(\mathbf{r}) \chi_{\pi}^{(+)}(\mathbf{r})$$

$$\boldsymbol{\pi}^{+} \mathbf{n} \rightarrow \mathbf{K}^{+} \mathbf{\Lambda}$$

$$\sum_{f} \delta(E_{K} + E_{f} - E_{\pi} - E_{i}) |\langle f | \hat{F}^{+} | i \rangle|^{2} = -\frac{1}{\pi} \operatorname{Im} \left\langle i \left| \hat{F} \frac{1}{E_{\pi} + E_{i} - E_{K} - H + i\eta} \hat{F} \right| i \right\rangle$$

$$-\frac{1}{\pi} \operatorname{Im} \left\langle i \left| \hat{F} \frac{1}{E - H + i\eta} \hat{F} \right| i \right\rangle$$
$$= -\frac{1}{\pi} \operatorname{Im} \sum_{n'n} \int d\mathbf{r} d\mathbf{r}' f_{n'}^*(\mathbf{r}') G_{n'n}(E; \mathbf{r}', \mathbf{r}) f_n(\mathbf{r})$$

$$f_n(\mathbf{r}) = F(\mathbf{r}) \langle n | \psi_N(\mathbf{r}) | i \rangle = F(\mathbf{r}) \langle A - 1; n | \psi_N(\mathbf{r}) | A \rangle$$

$$f_0(\mathbf{r}) = \psi_N(\mathbf{r}) : \text{ s.p.approximation}$$

$$G_{n'n}(E;\mathbf{r}',\mathbf{r}) = \left\langle n' \left| \psi_{\Lambda}(\mathbf{r}') \frac{1}{E - H + i\eta} \psi_{\Lambda}(\mathbf{r}) \right| n \right\rangle$$

|A-1; n> : intermediate nuclear-core state

アイコナール近似による (π, K) reaction

$$F(\mathbf{r}) = \chi_K^{(-)*}(\mathbf{p}_K, \mathbf{r}) \,\chi_\pi^{(+)}(\mathbf{p}_\pi, \mathbf{r})$$

$$\chi_{\pi}^{(+)}(\mathbf{p}_{\pi},\mathbf{r}) = \exp\left(i\mathbf{p}_{\pi}\mathbf{r} - \frac{1}{2}\bar{\sigma}_{\pi N}\int_{\infty}^{z}\rho(b,z')dz'\right)$$
$$\chi_{K}^{(-)*}(\mathbf{p}_{K},\mathbf{r}) = \exp\left(i\mathbf{p}_{K}\mathbf{r} - \frac{1}{2}\bar{\sigma}_{KN}\int_{z}^{\infty}\rho(b,z')dz'\right)$$

$$F(\mathbf{r}) = \exp(i\mathbf{q}\mathbf{r}) \exp\left(-\frac{1}{2}\sigma T(b) - \frac{1}{2}\Delta D(b,z)\right) \equiv \exp(i\mathbf{q}\mathbf{r}) \Gamma(r,\theta)$$

$$\mathbf{q} = \mathbf{p}_{\pi} - \mathbf{p}_{K}$$

$$\sigma = (\bar{\sigma}_{\pi N} + \bar{\sigma}_{K N})/2 \quad \Delta = (\bar{\sigma}_{\pi N} - \bar{\sigma}_{K N})/2$$

$$T(b) = \int_{-\infty}^{\infty} \rho(b, z')dz' \quad D(b) = 2\int_{0}^{z} \rho(b, z')dz'$$

$$\Gamma(r,\theta) = \exp\left(-\alpha\int_{a}^{b} \rho[(r^{2}sin^{2}\theta + z'^{2})^{1/2}]dz'\right)$$

$$\frac{d^2\sigma}{dE_K d\Omega} = \frac{1}{\pi} |t_{K\Lambda,\pi N}|^2 \frac{p_K E_K}{(2\pi)^2 v_\pi} S(E)$$
$$S(E) = -\text{Im} \sum_{n'n} \int d\mathbf{r} d\mathbf{r}' f_{n'}^*(\mathbf{r}') G_{n'n}(E; \mathbf{r}', \mathbf{r}) f_n(\mathbf{r})$$
$$\left(\frac{d\sigma}{d\Omega}\right) = |t_{\pi\Lambda,KN}|^2 \frac{k_\pi E_\pi}{(2\pi)^2 v_K}$$
$$\frac{d^2\sigma}{dE_\pi d\Omega} = \frac{1}{\pi} \left(\frac{d\sigma}{d\Omega}\right) S(E)$$

$$\begin{split} F(\mathbf{r}) &= \sum_{L} \sqrt{4\pi (2L+1)} \, i^{L} \, \tilde{j}_{L}(r) \, Y_{L0}(\hat{\mathbf{r}}) \\ \exp(i\mathbf{q}\mathbf{r}) &= \sum_{l} \, i^{l} \, j_{l}(qr) \, Y_{l0}(\hat{\mathbf{r}}) \\ \tilde{j}_{L}(r) &= i^{-L} (2L+1)^{-1} \, \sum_{ll'} (2l+1) (2l'+1) \langle l0l'0|L0\rangle^{2} \, i^{l} \, j_{l}(qr) \, \tilde{\Gamma}_{l'}(r) \\ \tilde{\Gamma}_{l}(r) &= \frac{1}{2} \int_{-1}^{1} dt P_{l}(t) \, \exp\left(-\frac{1}{2}\sigma \int_{-\infty}^{\infty} \rho((r^{2}(1-t^{2})+z'^{2})^{1/2}) dz'\right) \\ & \times \exp\left(-\Delta \int_{0}^{rt} \rho((r^{2}(1-t^{2})+z'^{2})^{1/2}) dz'\right) \end{split}$$

$$\hat{F} = \int d\mathbf{r} F(\mathbf{r}) \psi_{\Lambda}^{+}(\mathbf{r}) \psi_{N}(\mathbf{r})$$

$$S(E) = -\frac{1}{\pi} \operatorname{Im} \sum_{n'n} \int d\mathbf{r}' d\mathbf{r} f_{n'}^{*}(\mathbf{r}') G_{n'n}(E; \mathbf{r}', \mathbf{r}) f_{n}(\mathbf{r})$$

$$G_{n'n}(E; \mathbf{r}', \mathbf{r}) = \left\langle n' \left| \psi_{\Lambda}(\mathbf{r}') \frac{1}{E - H + i\eta} \psi_{\Lambda}^{+}(\mathbf{r}) \right| n \right\rangle$$

Single particle approximation $\alpha = nlm : \langle \alpha | \psi_N(\mathbf{r}) | i \rangle \rightarrow \phi_{nl}(r) Y_{lm}(\hat{\mathbf{r}})$ usual in GFM calculations $f_{\alpha}(\mathbf{r}) = F(\mathbf{r}) \phi_{nl}(r) Y_{lm}(\hat{\mathbf{r}})$

$$F(\mathbf{r}) Y_{lm}(\hat{\mathbf{r}}) = \sum_{L'} \sqrt{4\pi (2L'+1)} i^{L'} \tilde{j}_{L'}(r) Y_{L'0}(\hat{\mathbf{r}}) Y_{lm}(\hat{\mathbf{r}})$$
$$= \sum_{L'\lambda'} (2L'+1) \sqrt{\frac{2l+1}{2\lambda'+1}} i^{L'} \tilde{j}_{L'}(r) \langle L'0l0|\lambda'0\rangle \langle L'0lm|\lambda'm\rangle Y_{\lambda m}(\hat{\mathbf{r}})$$
$$F^{+}(\mathbf{r}) Y_{lm}^{*}(\hat{\mathbf{r}}) = \text{ similarly}$$

$$\begin{split} S(E) &= -\frac{1}{\pi} \mathrm{Im} \sum_{nlm} \langle i | \hat{F}^{+} G \hat{F} | i \rangle \\ &= -\frac{1}{\pi} \mathrm{Im} \sum_{nl} P_{nl} \sum_{L'L} (2L'+1) (2L+1) \langle L' 0 l 0 | \lambda' 0 \rangle^{2} \\ &\times \int_{0}^{\infty} r^{2} dr \int_{0}^{\infty} r'^{2} dr' \, \phi_{nl}^{*}(r') \, \tilde{j}_{L'}^{*}(r') \, G^{L}(E-\epsilon_{nl};r',r) \, \phi_{nl}(r) \, \tilde{j}_{L'}(r) \end{split}$$

Averaged- k_F approximation

NPA523,N1(1991)1

Excitation energies and cross sections of ${}^{16}_{\Lambda}$ O in the (π^+, K^+) reaction

Peaks	B_A or E_X (MeV)	FWHM (MeV)	Cross section $\sigma_{2^{\circ}-14^{\circ}}(\mu b)$	
#1	$B_A = 12.42 \pm 0.05$	2.75 ± 0.05	0.41 ± 0.02	
#2	$E_X = 6.23 \pm 0.06$	2.75 ± 0.05	0.91 ± 0.03	
# 3	$E_X = 10.57 \pm 0.06$	2.75 ± 0.05	1.05 ± 0.03	
#4	$E_X = 16.59 \pm 0.07$	3.13 ± 0.11	1.38 ± 0.06	

In $^{16}{}_{\Lambda}0$ case, it is necessary to take $1/2^-$ and $3/2^-$ hole states in $^{15}0$ core

GFM calculations with G-matrix folding models
are quite successful to reproduce
experimental (π,K) spectra
 when s.p. approximation is good

When many-body calculations are needed ?

F. Ajzenberg-selove E336 Exp.

Excitation energies and cross sections of ${}^{13}_{A}$ C states as populated by the (π^+, K^+) reaction

Peaks	B_A or E_X (MeV)	FWHM (MeV)	Cross sections $\sigma_{2^{\circ}-14^{\circ}}(\mu b)$	
#1	$B_A = 11.38 \pm 0.05$	2.23 ± 0.06	0.25 ± 0.02	
#2	$E_X = 4.85 \pm 0.07$	2.23 ± 0.06	0.42 ± 0.02	
#3	$E_X = 9.73 \pm 0.14$	2.23 ± 0.06	0.22 ± 0.02	
#4	$E_X = 11.75 \pm 0.15$	2.23 ± 0.06	0.30 ± 0.02	
# 5	$E_X = 15.31 \pm 0.06$	2.46 ± 0.08	1.29 ± 0.04	
# 6	$E_X = 23.68 \pm 0.16$	2.20 ± 0.29	0.33 ± 0.04	
#7	$E_X = 26.37 \pm 0.11$	2.41 ± 0.17	0.76 ± 0.06	

In $^{13}{}_{\Lambda}C$ case, it is necessary to take 0^+ and 2^+ states in ^{12}C core nucleus

 $\begin{array}{lll} f_n(\mathbf{r}) &=& F(\mathbf{r}) \left\langle n | \psi_N(\mathbf{r}) | i \right\rangle = F(\mathbf{r}) \left\langle A - 1; n | \psi_N(\mathbf{r}) | A \right\rangle \\ & |A\rangle = |^{13} \mathbb{C} \left(1/2^- \right) \right\rangle \\ & |A-1;n\rangle = |^{12} \mathbb{C} \left(0^+ \right) \right\rangle \text{ and } |^{12} \mathbb{C} \left(2^+ \right) \right\rangle \\ & \mathbf{a} = \langle ^{12} \mathbb{C} \left(0^+ \right) | \boldsymbol{\psi}_N |^{13} \mathbb{C} \left(1/2^- \right) \right\rangle \\ & \mathbf{b} = \langle ^{12} \mathbb{C} \left(2^+ \right) | \boldsymbol{\psi}_N |^{13} \mathbb{C} \left(1/2^- \right) \right\rangle \\ & \text{ treated as parameter } \\ & \text{ Shell model calculations are needed III} \end{array}$

Coupled - Channel treatment

 $\begin{bmatrix} p^{\Lambda}_{1/2}, \ 0+\rangle_{J=1/2} & \times & |p^{\Lambda}_{3/2}, \ 2+\rangle_{J=1/2} & \text{etc} \\ \begin{bmatrix} E_1 - T_1^{(l)} - U_{11}(r) & -U_{12}(r) \\ -U_{21}(r) & E_2 - T_2^{(l)} - U_{22}(r) \end{bmatrix} \begin{bmatrix} G_{11}^{(l)}(r,r') & G_{12}^{(l)}(r,r') \\ G_{21}^{(l)}(r,r') & G_{22}^{(l)}(r,r') \end{bmatrix} = \delta(r'-r) \mathbf{1},$

Transition densities for G-matrix folding are needed !!!

Collective model (MTT) for $^{12}\mbox{C}$ core

Ξ hypernuclei with G-matrix folding model derived from ESC08c

Experimental data suggesting attractive Ξ -nucleus interactions

 $U_{\equiv} \sim -14 \text{ MeV}$ $U_{\equiv} \sim -16 \text{ MeV}$

represented by Woods-Saxon potential

Table 1: $U_{\Xi}(\rho_0)$ and partial wave contributions with Continuous choice

	T	$^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	U_{Ξ}	Γ_{Ξ}
ESC08c	0	3.1	-9.8	-0.1	0.5	1.7	-1.5		
(CON)	1	9.1	-7.6	1.3	1.0	-2.4	0.0	-4.7	6.4

U_E - in neutron matter (T=1 components only) repulsive in higher density region !

Table 1: Calculated values of Ξ^- single particle energies E_{Ξ^-} and conversion widths Γ_{Ξ} for ${}^{12}_{\Xi^-}$ Be (${}^{11}B+\Xi^-$). ΔE_L and ΔE_C are contributions from Lane terms and Coulomb interactions, respectively. All entries are in MeV.

		$E_{\Xi^{-}}$	ΔE_L	ΔE_C	Γ_{Ξ^-}	$\sqrt{\langle r_{\Xi}^2 \rangle}$
ESC08c	s	-4.31	+0.27	-2.61	2.48	3.01
	p	-0.59	+0.06	*	0.58	7.12
WS14	s	-4.89		-2.71		
	p	-0.23		*		

* Coulomb Assisted Bound state

(K⁻,K⁺) production spectra of Ξ -hypernuclei by Green's function method in DWIA

> Ξ-nucleus G-matrix folding model derived from ESC08c

$$p_{K+}=1.65 \text{ GeV/c}$$
 $\theta_{K+}=0^{\circ}$

spreading width of hole-states experimental resolution $\Delta E=2~MeV$ are taken into account

Ξ -¹¹B potentials

L-dependence of folding potential

Table 1: Calculated values of Ξ^- single particle energies E_{Ξ^-} and conversion widths Γ_{Ξ} for $\frac{28}{\Xi^-}$ Mg (²⁷Al+ Ξ^-). ΔE_L and ΔE_C are contributions from Lane terms and Coulomb interactions, respectively. All entries are in MeV.

		$E_{\Xi^{-}}$	ΔE_L	ΔE_C	Γ_{Ξ^-}	$\sqrt{\langle r_{\Xi}^2 \rangle}$
ESC08c	s	-8.74	+0.16	-5.95	2.75	2.91
	p	-4.82	+0.10	*	1.54	3.85
	d	-1.26	+0.03	*	0.54	6.5 4

Table 1: Calculated values of Ξ^- single particle energies E_{Ξ^-} and conversion widths Γ_{Ξ} for ${}^{89}_{\Xi^-}$ Rb (88 Sr+ Ξ^-). ΔE_L and ΔE_C are contributions from Lane terms and Coulomb interactions, respectively. All entries are in MeV.

		$E_{\Xi^{-}}$	ΔE_L	ΔE_C	$\Gamma_{\Xi^{-}}$	$\sqrt{\langle r_{\Xi}^2 \rangle}$
ESC08c	s	-17.2	+0.68	-13.6	2.93	3.15
	p	-13.7	+0.56	-12.3	1.80	4.02
	d	-10.2	+0.43	*	1.17	4.71
	f	-6.57	+0.30	*	0.76	5.43
	g	-2.16	+0.01	*	0.01	14.4

 Σ - nucleus potential

$U_{\Sigma}(\rho_0)$ and partial wave contributions (Continuous Choice)

model	T	${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}
ESC08a	1/2	11.4	-23.4	1.7	1.9	-5.0	0.0	-0.7	
	3/2	-12.2	44.1	-4.1	-2.3	5.1	-3.9	-0.2	12.2
ESC08b	1/2	10.4	-25.4	1.4	2.5	-5.9	0.3	-0.8	
	3/2	-11.0	52.2	-3.0	-2.8	5.6	-4.8	-0.1	18.5
ESC08c	1/2	11.5	-19.1	2.2	1.7	-5.7	-1.0	-0.7	
	3/2	-13.3	34.8	-4.6	-1.8	5.6	-1.9	-0.3	7.5
ESC04a	1/2	11.6	-26.9	2.4	2.7	-6.4	-2.0	-0.8	
	3/2	-11.3	2.6	-6.8	-2.3	5.9	-5.1	-0.2	-36.5
NSC97f	1/2	14.9	-8.3	2.1	2.5	-4.6	0.5	-0.5	
	3/2	-12.4	-4.1	-4.1	-2.1	6.0	-2.8	-0.1	-12.9

Pauli-forbidden state in QCM \rightarrow strong repulsion in T=3/2 ${}^{3}S_{1}$ state taken into account by adapting Pomeron exchange in ESC approach

Optical potential **S** - nucleus folding potential derived from complex G-matrix

 $G_{\Sigma N}$ (r: E, k_F)

In N-nucleus scattering problem physical observables can be reproduced with "no free parameter"

Improved LDA by JLM Phys. Rev. C10 (1974) 1391

$$\begin{split} U(\rho, E) &= \sum_{ij} a_{ij} \, \rho^i \, E^{j-1} \\ U(r; E) &= (t \sqrt{\pi})^{-3} \int U(\rho(r'), E) \, \exp(-|\mathbf{r} - \mathbf{r}'|^2 / t^2) d\mathbf{r}' \end{split}$$

simple LDA : $U(\rho(r),E)$

 U_{Σ} (real) cancelingが効く W_{Σ}には"2乗和"で効く

by Maekawa, at al.

Fig. 2. Differential cross section of (π^-, K^+) reaction on ²⁸Si target at the incident momentum of $p_{\pi}=1.2 \text{ GeV}/c$. The solid line shows result of Batty's DD potential with LOFAt + DWIA, Other line are calculated results with LOFAt + DWIA with potential depth of $V_0=-50, -30, -10, 0, +10, +90 \text{ MeV}(\text{up to down})$, respectively. Imaginary part is fixed to be -20 MeV.

(π^{-},K^{+}) strength function on ²⁸Si

QM Pauli-forbidden coreの強さの確定

 (π, K) strength function で選別できるか? Σ^+ p scattering at JPARC

Conclusion

Properties of Λ -hypernuclei derived from ESC08 models are consistent with experimental data of energy spectra

Difference among versions (a,b,c) appear in $U_{\Sigma} \& U_{\Xi}$

ESC08c (final version of ESC08) and Ξ hypernuclei

G-matrix folding model derived from ESC08c is very promising for production spectra of Ξ -hypernuclei

ESCO8c folding potentials are similar to WS14

Highest-L bound states are strongly excited due to strong effects of k_F -dependence

A case: $U_{\Lambda}(\rho_0) = -37 \text{ MeV}$ $U_{WS} = -30 \text{ MeV}$