Knockout-reaction with RIB

$$
\text { A3F-CNSSS20, August } 17^{\text {th }}-21^{s t}, 2020
$$

My aim is:

- to explain very basic (but important) things on proton-"induced" knockout reactions, - to instruct how to perform DWIA calculations with a code pikoe (with thought!), - not to demonstrate our recent activities or to go into the very details of theories.

Kazuyuki Ogata

RCNP, Osaka University

Plan of this talk (1/2)

1) Overview of $(p, 2 p)$ studies (on stable nuclei)
T. Wakasa, KO, T. Noro, PPNP 96, 32 (2017); T. Noro +, PTEP 2020 (in press).

1-1. "Definition" of the KO reaction
1-2. What we can learn from PWIA analysis of KO reactions.
$1-3$. What we can learn from DWIA analysis of KO reactions.
2) A bit more advanced aspects of $(p, 2 p)$ studies

Th. A. J. Maris, NP 9 (1958-1959) 577.
2-1. Key ingredients for spectroscopic studies
2-2. The Maris effect
2-3. Treatment of the identical particles in $(p, 2 p)$
3) Momentum distribution in inverse kinematics

KO, K. Yoshida, K. Minomo, PRC 92, 034615 (2015).
3-1. Peak shift and asymmetric shape
3-2. Phase volume (PV) and attractive distortion effects
3-3. SEASTAR, SHARAQ, and GSI data analysis with DWIA

Plan of this talk (2/2)

4) Some theoretical achievements (for future)
K. Yoshida, M. Goméz-Ramos, KO, and A. M. Moro, PRC 97, 024608 (2018).

4-1. Microscopic optical potential
4-2. Benchmark study on ${ }^{15} \mathrm{C}(p, p n)$ with DWIA, TC, and Faddeev,-AGS.
5) Divergence of the TDX in inverse kinematics
$K O+$, in preparation.
5-1. Two-value feature of the kinematics and divergence of PV
$5-2$. When occurs?
6) Some recent/ongoing KO reaction studies around RCNP/RIBF
$6-1 .{ }^{2} n$ correlation study via $(p, p n)$
6-2. $\alpha \mathrm{KO}$ reactions
6-3. deuteron KO reactions
7) Summary

Plan of this talk (1/2)

1) Overview of $(p, 2 p)$ studies (on stable nuclei)
T. Wakasa, KO, T. Noro, PPNP 96, 32 (2017); T. Noro+, PTEP 2020 (in press).

1-1. "Definition" of the KO reaction
$1-2$. What we can learn from PWIA analysis of KO reactions.
$1-3$. What we can learn from DWIA analysis of KO reactions.
2) A bit more advanced aspects of $(p, 2 p)$ studies

Th. A. J. Maris, Nucl. Phys. 9 (1958-1959) 577.
2-1. Key ingredients for spectroscopic studies
2-2. The Maris effect
2-3. Treatment of the identical particles in ($p, 2 p$)
3) Momentum distribution in inverse kinematics

KO, K. Yoshida, K. Minomo, PRC 92, 034615 (2015).
3-1. Peak shift and asymmetric shape
3-2. Phase volume (PV) and attractive distortion effects
3-3. SEASTAR, SHARAQ, and GSI data analysis with DWIA

What is the knockout reaction?

Qualitatively speaking, by quasi-free scattering a process is meant in which a high energy ($100-1000 \mathrm{MeV}$) particle knocks a nucleon out of a nucleus and no further violent interaction occurs between the nucleus and the incident or the two outgoing particles.
G. Jacob and Th. A. J. Maris, Rev. Mod. Phys. 38, 121 (1966).

In essence, a proton induced knockout reaction is a nuclear reaction in which an incident proton interacts with either a nucleon or a nuclear cluster in a target nucleus and knocks this entity out of the nucleus, generating a one-hole or a clusterhole state. This process, in particular the one nucleon knockout reaction, is the most dominant reaction at intermediate ($200-1000 \mathrm{MeV}$) energies.
T. Wakasa, KO, T. Noro, Prog. Part. Nucl. Phys. 96, 32 (2017).

Knockout or removal?

large energy-momentum transfer

small energy-momentum transfer

NOTE: At Michigan State University (MSU), nucleon removal processes have intensively been measured and studied. Some people call them "knockout" processes but those reaction mechanism is quite different from that of the knockout process.

What we can study via KO reaction?

\checkmark We have $9+1$ d.o.f. in the final state. Because of the energy-momentum conservation, 6 out of 10 are independent.
\checkmark If \boldsymbol{K}_{1} and \boldsymbol{K}_{2} are specified, all the kinematics are determined as well as M_{B} (internal energy of the residue B). This is called kinematically complete measurement.
\checkmark In what follows, \underline{I} assume that M_{B} has been specified. Then, there are 5 d.o.f. left.
\checkmark In the picture of KO reactions, B behaves as a spectator. This indicates that before the KO , the nucleon had a momentum $\boldsymbol{K}_{\mathrm{N}}=-\boldsymbol{K}_{\mathrm{B}}$ in the nucleus A.

What we can study via KO reaction? (Con't)

By KO reactions, one may take a "snapshot" of a s.p. momentum of a nucleus.

Plane-Wave Impulse Approx ${ }^{\mathrm{n}}$ (PWIA) for p2p (1/2)

$$
\begin{gathered}
T^{\text {PWIA }}=\left\langle e^{i \boldsymbol{K}_{1} \cdot \boldsymbol{R}_{1}} e^{i \boldsymbol{K}_{2} \cdot \boldsymbol{R}_{2}}\right| t_{p p}(s) \left\lvert\, e^{\left.\left.i \boldsymbol{K}_{0} \cdot \boldsymbol{R}_{0} \varphi^{\varphi\left(\boldsymbol{R}_{2}\right)}\right)\right\rangle} \begin{array}{c}
\text { proton bound state W.Fn. } \\
\boldsymbol{R}_{1}=\boldsymbol{R}+\boldsymbol{s} / 2, \quad \boldsymbol{R}_{2}=\boldsymbol{R}-\boldsymbol{s} / 2, \quad \boldsymbol{R}_{0} \sim \boldsymbol{R}_{1} \\
T^{\text {PWIA }}=\int d \boldsymbol{s} d \boldsymbol{R} e^{-i \boldsymbol{K}_{1} \cdot(\boldsymbol{R}+\boldsymbol{s} / 2)} e^{-i \boldsymbol{K}_{2} \cdot(\boldsymbol{R}-\boldsymbol{s} / 2)} t_{p p}(s) e^{i \boldsymbol{K}_{0} \cdot(\boldsymbol{R}+\boldsymbol{s} / 2)} \varphi\left(\boldsymbol{R}_{2}\right) \\
\varphi\left(\boldsymbol{R}_{2}\right)=\frac{1}{(2 \pi)^{3}} \int d \boldsymbol{K}_{N} \tilde{\varphi}\left(\boldsymbol{K}_{N}\right) e^{i \boldsymbol{K}_{N} \cdot(\boldsymbol{R}-\boldsymbol{s} / 2)}
\end{array} .\right.
\end{gathered}
$$

Plane-Wave Impulse Approx ${ }^{\mathrm{n}}$ (PWIA) for p 2 p (2/2)

$$
\begin{aligned}
T^{\mathrm{PWIA}} & =\frac{1}{(2 \pi)^{3}} \int d \boldsymbol{K}_{N} \tilde{\varphi}\left(\boldsymbol{K}_{N}\right) \int e^{-i \boldsymbol{K}_{1} \cdot \boldsymbol{s} / 2} e^{i \boldsymbol{K}_{2} \cdot \boldsymbol{s} / 2} t_{p p}(s) e^{i \boldsymbol{K}_{0} \cdot \boldsymbol{s} / 2} e^{-i \boldsymbol{K}_{N} \cdot \boldsymbol{s} / 2} d \boldsymbol{s} \\
& \times \int e^{-i \boldsymbol{K}_{1} \cdot \boldsymbol{R}} e^{-i \boldsymbol{K}_{2} \cdot \boldsymbol{R}} e^{i \boldsymbol{K}_{0} \cdot \boldsymbol{R}} e^{i \boldsymbol{K}_{N} \cdot \boldsymbol{R}} d \boldsymbol{R}=(2 \pi)^{3} \delta\left(\boldsymbol{K}_{0}+\boldsymbol{K}_{N}-\boldsymbol{K}_{1}-\boldsymbol{K}_{2}\right) \\
\boldsymbol{\kappa} & =\frac{\boldsymbol{K}_{0}-\left(\boldsymbol{K}_{1}+\boldsymbol{K}_{2}-\boldsymbol{K}_{0}\right)}{2}=\frac{2 \boldsymbol{K}_{0}-\boldsymbol{K}_{1}-\boldsymbol{K}_{2}}{2}, \quad \boldsymbol{\kappa}^{\prime}=\frac{\boldsymbol{K}_{1}-\boldsymbol{K}_{2}}{2} \\
T^{\mathrm{PWIA}}= & \tilde{\varphi}\left(\boldsymbol{K}_{1}+\boldsymbol{K}_{2}-\boldsymbol{K}_{0}\right) \int e^{-i \boldsymbol{\kappa}^{\prime} \cdot \boldsymbol{s}} t_{p p}(s) e^{i \boldsymbol{\kappa} \cdot \boldsymbol{s}} d \boldsymbol{s}=\tilde{\varphi}\left(\boldsymbol{K}_{1}+\boldsymbol{K}_{2}-\boldsymbol{K}_{0}\right) \tilde{t}_{p p}(q)
\end{aligned}
$$

\checkmark Momentum transfer \boldsymbol{q} (usually large): $\boldsymbol{q} \equiv \boldsymbol{\kappa}-\boldsymbol{\kappa}^{\prime}=\boldsymbol{K}_{0}-\boldsymbol{K}_{1}$
\checkmark Missing momentum \boldsymbol{Q} (usually intended to be small): $\boldsymbol{Q} \equiv \boldsymbol{K}_{0}-\boldsymbol{K}_{1}-\boldsymbol{K}_{2}$ NOTE: $Q=0$ corresponds to the recoilless condition. $\quad=-\boldsymbol{K}_{\mathrm{B}}$

An example of PWIA calculation

\checkmark At $\theta_{2}=50$ deg., $K_{\mathrm{B}} \sim 10.7 \mathrm{MeV} / c$, which corresponds to the recoilless condition (RLC). E_{1} and θ_{2} were chosen so that the RLC is achieved at a value of θ_{2}.

sample1.cnt Input for pikoe (read the manual!)

You need to put FLtbl_rede.dat at the directory specified here. In this example, it must be put on the directory where pikoe1.exe (or a.out etc.) exits. You can change the path accordingly to your directory structure.

$j=3 / 2, \ell=1$, the S-factor is set to 1 , the \# of nodes is 0 .

WS parameter used in ${ }^{12} \mathrm{C}\left(e, e^{\prime} p\right)$ analysis
θ_{2} is varied from 0 deg. to 180 deg. with the step of0.5 deg.

PWIA results for ${ }^{40} \mathrm{Ca}(\mathrm{p}, 2 \mathrm{p})$

\checkmark The orbital angular momentum ℓ can be determined by the shape of the TDX.
HW: By preparing the input files, reproduce the results shown above. The kinematical condition for $T_{1}, \theta_{1}, \phi_{1}$, and ϕ_{2} is the same as for the ${ }^{12} \mathrm{C}$ target case.

Profile of K_{B}

From PWIA to Distorted-Wave IA (DWIA)

$$
\begin{gathered}
T^{\mathrm{PWIA}}=\left\langle e^{i \boldsymbol{K}_{1} \cdot \boldsymbol{R}_{1}} e^{i \boldsymbol{K}_{2} \cdot \boldsymbol{R}_{2}}\right| t_{p p}(s)\left|e^{i \boldsymbol{K}_{0} \cdot \boldsymbol{R}_{0}} \varphi\left(\boldsymbol{R}_{2}\right)\right\rangle \\
T^{\mathrm{DWIA}}=\left\langle\chi_{\boldsymbol{K}_{1}}\left(\boldsymbol{R}_{1}\right) \chi_{\boldsymbol{K}_{2}}\left(\boldsymbol{R}_{2}\right)\right| t_{p p}(s)\left|\chi_{\boldsymbol{K}_{0}}\left(\boldsymbol{R}_{0}\right) \varphi\left(\boldsymbol{R}_{2}\right)\right\rangle
\end{gathered}
$$

\checkmark The asymptotic momentum approximation (AMA) on the propagation of the DW for a short distance: $\chi_{\boldsymbol{K}_{i}}(\boldsymbol{R} \pm \boldsymbol{s} / 2) \approx \chi_{\boldsymbol{K}_{i}}(\boldsymbol{R}) e^{i \boldsymbol{K}_{i} \cdot \boldsymbol{s} / 2}$

$$
\begin{aligned}
& \text { Factorization approx}{ }^{\mathrm{n}} \text { to the } T \text { matrix } \\
& T^{\text {DWIA }} \approx \tilde{t}_{p p}(q) \int d \boldsymbol{R} \chi_{\boldsymbol{K}_{1}}^{*}(\boldsymbol{R}) \chi_{\boldsymbol{K}_{2}}^{*}(\boldsymbol{R}) \chi_{\boldsymbol{K}_{0}}(\boldsymbol{R}) \varphi(\boldsymbol{R})
\end{aligned}
$$

\checkmark NOTE: Some people call this the zero-range approx ${ }^{\mathrm{n}}$ but it will be misleading. $\tilde{t}_{p p}$ does contain an integration over s. The zero-range approx ${ }^{\mathrm{n}}$ is not adopted for $t_{p p}$.

Why DWIA, not DWBA?

\checkmark Answer: Because the transition interaction is the $N N$ effective interaction in which all the ladder diagrams regarding $v_{N N}$ are taken into account.

$$
v_{N N}(s) \psi(\boldsymbol{s})=t_{N N}(s) e^{i \boldsymbol{\kappa} \cdot \boldsymbol{s}}
$$

cf. Lippmann-Schwinger Eq.

$$
\begin{aligned}
\psi(\boldsymbol{s}) & =e^{i \kappa \cdot s}+\frac{1}{E_{N N}-T_{s}+i \varepsilon} v_{N N}(s) \psi(s) \\
& =e^{i \kappa \cdot s}+\frac{1}{E_{N N}-T_{s}+i \varepsilon} v_{N N}(s)\left[e^{i \kappa \cdot s}+\frac{1}{E_{N N}-T_{s}+i \varepsilon} v_{N N}(s) \psi(s)\right]=\ldots
\end{aligned}
$$

\checkmark We need an $N N$ effective interaction in the many-body system but it is often replaced with $t_{N N}$. This is the essence of the impulse approximation, which will be valid at intermediate energies.

NN t-matrix effective interaction (in free space)

$$
v_{N N}(s) \psi(\boldsymbol{s})=t_{N N}(s) e^{i \boldsymbol{\kappa} \cdot \boldsymbol{s}}
$$

Transition by a bare interaction with infinite order processes is expressed by a single step transition by an effective interaction.

- An effective interaction has no repulsive core and is easily handled.
- The wave function (of a many-body system) to be operated does not need to be very accurate.

An example of the comparison between v and t
M. Yahiro, K. Minomo, KO, M. Kawai, PTP 120, 767 (2008).

Spectroscopic study via p2p with DWIA

\checkmark The spectroscopic factor can be determined by the magnitude of the TDX.
\checkmark NOTE: In the PPNP review and PTEP paper, the finite solid-angle and momentumbite $(\Omega-\Delta P)$ corrections have been applied to the DWIA calculations.

Spectroscopic study via p2p with DWIA

\checkmark The spectroscopic factor can be determined by the magnitude of the TDX.
\checkmark NOTE: In the PPNP review and PTEP paper, the finite solid-angle and momentumbite $(\Omega-\Delta P)$ corrections have been applied to the DWIA calculations.

sample2.cnt Input for ${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p})$ with DWIA

The optical potential file for particle 0 (unit \# is set to 12) and that for particles 1 and 2 (unit \# 13). Because the KD potential is not applicable, you need to prepare optical potentials as ext. files.
S-factor. In an actual study, it is determined to reproduce exp. data.

Distorted waves are calculated with orbital ang. mom. L up to 60 .

Distorting pots. are given in the files of unit $\# \mathrm{~s}=12,13$, and 13 for particles 0,1 , and 2.

This value is negative. So the nonlocality correction function is read from the ext. files (the absolute value has no meaning in this case).

If you use KD (when it is applicable), 0.85 is recommended for these values.

Spectroscopic study via p2p with DWIA 2

\checkmark When the states are not well separated, the multipole decomposition analysis (MDA) can be used (if ℓ are different).

Consistency between $\mathrm{S}_{\mathrm{p} 2 \mathrm{p}}$ and $\mathrm{S}_{\mathrm{ee}, \mathrm{p}}$

Based on data at 392 MeV taken at RCNP
T. Noro + , PTEP 2020 (in press).

\checkmark They are consistent within uncertainties of $15-20 \%$ except for ${ }^{208} \mathrm{~Pb}$.
$\checkmark p p N$ can be applied to $n \mathrm{KO}$ and KO for unstable nuclei.

Plan of this talk (1/2)

1) Overview of $(p, 2 p)$ studies (on stable nuclei)
T. Wakasa, KO, T. Noro, PPNP 96, 32 (2017); T. Noro+, PTEP 2020 (in press).

1-1. "Definition" of the KO reaction
$1-2$. What we can learn from PWIA analysis of KO reactions.
$1-3$. What we can learn from DWIA analysis of KO reactions.
2) A bit more advanced aspects of $(p, 2 p)$ studies

Th. A. J. Maris, Nucl. Phys. 9 (1958-1959) 577.
2-1. Key ingredients for spectroscopic studies
2-2. The Maris effect
2-3. Treatment of the identical particles in $(p, 2 p)$
3) Momentum distribution in inverse kinematics

KO, K. Yoshida, K. Minomo, PRC 92, 034615 (2015).
3-1. Peak shift and asymmetric shape
3-2. Phase volume (PV) and attractive distortion effects
3-3. SEASTAR, SHARAQ, and GSI data analysis with DWIA

Keys to "establish" p2p as a spectroscopic tool

\checkmark Bound state W.Fn. used in the analysis of ($e, e^{\prime} p$).
\checkmark If not available, the s.p. model of Bohr-Mottelson can be used (IBMC=IBMS=1).
\checkmark Well-constrained optical potential $U_{\text {opt }}$
\checkmark The Koning-Delaroche (KD) global $U_{\text {opt }}$ are adopted when IPOT $=1$. It is limited for the target mass $24 \leq A \leq 209$ and the incident energy $1 \mathrm{keV} \leq E \leq 200 \mathrm{MeV}$.
\checkmark The Dirac phenomenology (Dirac PH) was employed in the PPNP review article. The EDAD1 set is applicable to nuclei from ${ }^{12} \mathrm{C}$ to ${ }^{208} \mathrm{~Pb}$ for $21 \mathrm{MeV} \leq E \leq 1040$ MeV . To use the Dirac PH, you need to prepare an external file for the potential.
\checkmark Nonlocality corrections to the bound-state W.Fn. and distorted waves (next page).
$\checkmark \mathrm{M} \phi$ ller factor: the Jacobian for the $N N t$-matrix amplitude from the $N N$ c.m. frame to the $p+$ A c.m. frame. pikoe always takes this into account.
\checkmark Fermi motion of the nucleon in A (for $E_{\text {in }}=392 \mathrm{MeV}$, the $N N$ scattering energy varies from 95 MeV to 550 MeV). pikoe always takes this into account.

Nonlocality corrections (NLC)

\checkmark Local phenomenological N-A potentials are not constrained so as to generate a proper W.Fn in the nuclear interior region. (Its asymptotic form is OK.)
$\checkmark N$-A potentials are nonlocal in general. (cf. the projection operator formalism by Feshbach)

\checkmark As a phenomenological prescription, the W.Fn. is multiplied by the following Perey factor to include the nonlocality effect.
range of nonlocality (0.85 fm)

$$
F_{\mathrm{PR}}(R)=C\left[1-\frac{\mu}{2 \hbar^{2}}(\beta U(R)]^{-1 / 2}\right.
$$

renormalization factor for b.s. W.Fn.
\checkmark A similar correction can be made by using a Darwin factor in Dirac PH, though its correspondence with the Perey factor has not yet been proved.

Feshbach's projection operator formalism

\checkmark The entire space is divided into the P-space (to be described explicitly) and the Q-space (complement).

$$
\begin{gathered}
(H-E) \Psi=0, \quad \Psi=\hat{P} \Psi+\hat{Q} \Psi . \\
\hat{P}+\hat{Q}=1, \quad \hat{P}^{2}=\hat{P}, \quad \hat{Q}^{2}=\hat{Q}, \quad \hat{P} \hat{Q}=\hat{Q} \hat{P}=0 . \\
\left.\left\{\begin{array}{l}
(\hat{P} H \hat{P}-E) \hat{P} \Psi+\hat{P} H \hat{Q} \Psi=0, \\
(\hat{Q} H \hat{Q}-E) \hat{Q} \Psi+\hat{Q} H \hat{P} \Psi=0 . \\
\left(\hat{P} H \hat{P}+\hat{P} H \hat{Q} \frac{1}{E-\hat{Q} H \hat{Q}+i \eta} \hat{Q} H \hat{P} \Psi .\right. \\
(\hat{Q}+i \eta
\end{array}\right) \hat{Q} H \hat{P}-E\right) \hat{P} \Psi=0 .
\end{gathered}
$$

\checkmark The potential to describe the P-space is complex, energy-dependent, and nonlocal.

Input for checking the NLC effect

You can switch-off the NLC for the b.s. W.Fn. by setting this value to 0 .

HW:

Draw a figure for seeing the NLC effect on ${ }^{40} \mathrm{Ca}(p, 2 p){ }^{39} \mathrm{~K}_{\text {ex }}$ at 392 MeV that is similar to the figure on the previous slide.

You can switch-off the NLC for the DWs by setting these values to 0 . You can also investigate the NLC effect on each particle.

The M ϕ ller factor

\checkmark It is just a Jacobian but its (trivial) importance has not been recognized well in some studies (in my observation).
\checkmark Neglect of the Møller factor results in an overshooting of the TDX at high energies.

Plan of this talk (1/2)

1) Overview of $(p, 2 p)$ studies (on stable nuclei)
T. Wakasa, KO, T. Noro, PPNP 96, 32 (2017); T. Noro+, PTEP 2020 (in press).

1-1. "Definition" of the KO reaction
$1-2$. What we can learn from PWIA analysis of KO reactions.
$1-3$. What we can learn from DWIA analysis of $K O$ reactions.
2) A bit more advanced aspects of $(p, 2 p)$ studies

Th. A. J. Maris, Nucl. Phys. 9 (1958-1959) 577.
2-1. Key ingredients for spectroscopic studies
2-2. The Maris effect
2-3. Treatment of the identical particles in $(p, 2 p)$
3) Momentum distribution in inverse kinematics

KO, K. Yoshida, K. Minomo, PRC 92, 034615 (2015).
3-1. Peak shift and asymmetric shape
3-2. Phase volume (PV) and attractive distortion effects
3-3. SEASTAR, SHARAQ, and GSI data analysis with DWIA

MDA for two states having the same ℓ

T. Wakasa, KO, and T. Noro, PPNP 96, 32 (2017).

Recoil momentum $p_{\mathrm{B}}(\mathrm{MeV} / \mathrm{c})$
MDA fails to differentiate the two states.

Recoil momentum $p_{\mathrm{B}}(\mathrm{MeV} / \mathrm{c})$
The (vector) analyzing power A_{y} has a strong j dependence because of the Maris polarization (Maris effects).

MDA for two states having the same ℓ

T. Wakasa, KO, and T. Noro, PPNP 96, 32 (2017).

$$
\begin{gathered}
\text { 덩 } \approx 20 \text {, }{ }^{{ }^{48} \mathrm{Ca}(p, 2 p)^{47} \mathrm{~K}}{ }^{T_{0}=197 \mathrm{MeV}}=\frac{d \sigma(\uparrow)-d \sigma(\downarrow)}{d \sigma(\uparrow)+d \sigma(\downarrow)}
\end{gathered}
$$

$\checkmark A_{y}($ for $>0)$ represents to what extent a spin-up projectile contributes the process considered.
\checkmark The Maris effect is useful for the j^{π} specification in general.

Recoil momentum $p_{\mathrm{B}}(\mathrm{MeV} / \mathrm{c})$
The (vector) analyzing power A_{y} has a strong j dependence because of the Maris polarization (Maris effects).

The Maris effect (1/2)

Th. A. J. Maris, Nucl. Phys. 9 (1958-1959) 577.

The Maris effect (2/2)

MDA for two states having the same ℓ

T. Wakasa, KO, and T. Noro, PPNP 96, 32 (2017).

Recoil momentum $p_{\mathrm{B}}(\mathrm{MeV} / \mathrm{c})$
MDA fails to differentiate the two states.

Recoil momentum $p_{\mathrm{B}}(\mathrm{MeV} / \mathrm{c})$
The (vector) analyzing power A_{y} has a strong j dependence because of the Maris polarization (Maris effects).

Plan of this talk (1/2)

1) Overview of $(p, 2 p)$ studies (on stable nuclei)
T. Wakasa, KO, T. Noro, PPNP 96, 32 (2017); T. Noro+, PTEP 2020 (in press).

1-1. "Definition" of the KO reaction
$1-2$. What we can learn from PWIA analysis of KO reactions.
$1-3$. What we can learn from DWIA analysis of KO reactions.
2) A bit more advanced aspects of $(p, 2 p)$ studies

Th. A. J. Maris, Nucl. Phys. 9 (1958-1959) 577.
2-1. Key ingredients for spectroscopic studies
2-2. The Maris effect
2-3. Treatment of the identical particles in $(p, 2 p)$
3) Momentum distribution in inverse kinematics

KO, K. Yoshida, K. Minomo, PRC 92, 034615 (2015).
3-1. Peak shift and asymmetric shape
3-2. Phase volume (PV) and attractive distortion effects
3-3. SEASTAR, SHARAQ, and GSI data analysis with DWIA

NOTE: An integral with no specific range means an integration over entire regions.

$$
\begin{aligned}
& \sigma_{p p} \equiv \frac{1}{2} \int\left(\frac{d \sigma^{\mathrm{conv}}}{d \Omega}\right) d \Omega=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi / 2}\left(\frac{d \sigma^{\mathrm{conv}}}{d \Omega}\right) \sin \theta d \theta \\
& \left.\frac{d \sigma^{\mathrm{conv}}}{d \Omega}=\frac{\mu^{2}}{\left(2 \pi \hbar^{2}\right)^{2}}\left|\left\langle\boldsymbol{\kappa}^{\prime}\right| t_{N N}\left(1-\hat{P}^{\mathrm{ex}}\right)\right| \boldsymbol{\kappa}\right\rangle\left.\right|^{2}=\frac{d \sigma^{\mathrm{exp}}}{d \Omega}
\end{aligned}
$$

defined by \# of counts at a detector
defined by reaction probability

$$
\begin{aligned}
& \sigma_{p p} \equiv \int\left(\frac{d \sigma^{\text {theor }}}{d \Omega}\right) d \Omega \\
& \frac{d \sigma^{\text {theor }}}{d \Omega}=\frac{\mu^{2}}{\left(2 \pi \hbar^{2}\right)^{2}} \left\lvert\,\left\langle\boldsymbol{\kappa}^{\prime}\right|\left(\left.\frac{1}{\sqrt{2}} t_{N N}\left(1-\hat{P}^{\mathrm{ex}}\right)|\boldsymbol{\kappa}\rangle\right|^{2}\right.\right.
\end{aligned}
$$

Counting rule
(classical mechanics)

Antisymmetrization of the wave function (quantum mechanics)

The ($\mathrm{p}, 2 \mathrm{p}$) process: case 1

\checkmark When pikoe outputs an integrated TDX, regardless of the integration region, the value is divided by 2 .

The ($\mathrm{p}, 2 \mathrm{p}$) process: case 2

Plan of this talk (1/2)

1) Overview of $(p, 2 p)$ studies (on stable nuclei)
T. Wakasa, KO, T. Noro, PPNP 96, 32 (2017); T. Noro+, PTEP 2020 (in press).

1-1. "Definition" of the KO reaction
$1-2$. What we can learn from PWIA analysis of KO reactions.
$1-3$. What we can learn from DWIA analysis of KO reactions.
2) A bit more advanced aspects of $(p, 2 p)$ studies

Th. A. J. Maris, Nucl. Phys. 9 (1958-1959) 577.
2-1. Key ingredients for spectroscopic studies
2-2. The Maris effect
2-3. Treatment of the identical particles in ($p, 2 p$)
3) Momentum distribution in inverse kinematics

KO, K. Yoshida, K. Minomo, PRC 92, 034615 (2015).
3-1. Peak shift and asymmetric shape
3-2. Phase volume (PV) and attractive distortion effects
3-3. SEASTAR, SHARAQ, and GSI data analysis with DWIA

Spectroscopic study via p2p with DWIA 2

Question:
Why do you expect a symmetric shape for the TDX?

\checkmark When the states are not well separated, the multipole decomposition analysis (MDA) can be used (if ℓ are different).

Symmetric or asymmetric?

Kinematics are asymmetric so the observables. Symmetric shape is obtained only when the effect of the asymmetric kinematics can be neglected.

Momentum distribution (MD) of the residue B

$\checkmark d \sigma / d \boldsymbol{K}_{\mathrm{B}}$, with specifying M_{B}, will be an ideal observable for the s.p. structure of A. \checkmark It will be rather easy to measure in inverse kinematics experiments.

MD of ${ }^{11} \mathrm{~B}$ of ${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p}){ }^{11} \mathrm{~B}$ in inverse kinematics

\checkmark The 2-dim. MD directly reflects the proton s.p. structure in ${ }^{12} \mathrm{C}$.

Input for MD calc. of ${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p})$ in A -frame $\&$ inv. kin.

sample3.cnt

A-frame (V-frame for inv. kin.)
inverse kinematics

> MD calc.
$K_{\mathrm{B} z}$ in the A-frame is varied from -2.0 to 2.0 with the step size of 0.05 (unit is fm^{-1}).
$K_{\mathrm{B} b}$ is varied from 0 to 2.0 with the step size of 0.05 .

output files for the 1-dimensional MDs

The unit of 1 dimMD is $\mu \mathrm{b} /(\mathrm{MeV} / c)$

These lines have no meaning when IVAR $=9$

You must make these \#s finite (15 is enough in usual cases).

MD of ${ }^{11} \mathrm{~B}$ of ${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p}){ }^{11} \mathrm{~B}_{\text {g.s. }} @ 100 \mathrm{MeV} / \mathrm{u}$ in inv. kin.

\checkmark The asymmetric LG-MD is due to the phase-volume \& attractive distortion effects.

What is the phase volume (PV)?

\checkmark Answer: The size (volume) of the phase space (here, momentum space) that can satisfy the energy and momentum conservation. It depends on the choice of independent variables.
\checkmark Infinitesimal cross section defined in the p-A c.m. frame (the starting point)

$$
d \sigma=C_{0}|T|^{2} \delta\left(\boldsymbol{K}_{\mathrm{tot}}^{\prime}-\boldsymbol{K}_{\mathrm{tot}}\right) \delta\left(E_{\mathrm{tot}}^{\prime}-E_{\mathrm{tot}}\right) d \boldsymbol{K}_{1} d \boldsymbol{K}_{2} d \boldsymbol{K}_{\mathrm{B}}
$$

Lorentz invariance of the 4-dim. delta function and $d \boldsymbol{K} / E$ for each particle
Superscript A means the A-rest frame

$$
d \sigma=C_{0}|T|^{2} \delta\left(\boldsymbol{K}_{\text {tot }}^{\prime \mathrm{A}}-\boldsymbol{K}_{\text {tot }}^{\mathrm{A}}\right) \delta\left(E_{\text {tot }}^{\prime \mathrm{A}}-E_{\text {tot }}^{\mathrm{A}}\right) \frac{E_{1} E_{2} E_{\mathrm{B}}}{E_{1}^{\mathrm{A}} E_{2}^{\mathrm{A}} E_{\mathrm{B}}^{\mathrm{A}}} d \boldsymbol{K}_{1}^{\mathrm{A}} d \boldsymbol{K}_{2}^{\mathrm{A}} d \boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}}
$$

\checkmark Let us decide to choose $\boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}}$ and Ω_{2}^{A} as independent variables. Our aim is to calculate

$$
\frac{d^{2} \sigma}{d \boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}} d \Omega_{2}^{\mathrm{A}}}
$$

Calculation of the PV

\checkmark We perform an integration over $\boldsymbol{K}_{1}^{\mathrm{A}}$. By the mom. cons. it is fixed at

$$
\boldsymbol{K}_{1}^{\mathrm{A}}=\boldsymbol{K}_{0}^{\mathrm{A}}-\boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}}-\boldsymbol{K}_{2}^{\mathrm{A}} \equiv \boldsymbol{q}_{\mathrm{B}}^{\mathrm{A}}-\boldsymbol{K}_{2}^{\mathrm{A}}
$$

\checkmark Infinitesimal cross section for which the mom. cons. is satisfied (in the A-rest frame)

$$
d \sigma=C_{0} \frac{E_{1} E_{2} E_{\mathrm{B}}}{E_{1}^{\mathrm{A}} E_{2}^{\mathrm{A}} E_{\mathrm{B}}^{\mathrm{A}}}|T|^{2} \delta\left(E_{\text {tot }}^{\prime \mathrm{A}}-E_{\mathrm{tot}}^{\mathrm{A}}\right) d \boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}}\left(K_{2}^{\mathrm{A}}\right)^{2} d K_{2}^{\mathrm{A}} d \Omega_{2}^{\mathrm{A}}
$$

$$
\begin{aligned}
\checkmark \mathrm{PV} & \rho \equiv\left(K_{2}^{\mathrm{A}}\right)^{2} \int \delta\left(E_{\mathrm{tot}}^{\prime \mathrm{A}}-E_{\mathrm{tot}}^{\mathrm{A}}\right) d K_{2}^{\mathrm{A}} \equiv\left(K_{2}^{\mathrm{A}}\right)^{2} \int \delta\left(f\left(K_{2}^{\mathrm{A}}\right)\right) d K_{2}^{\mathrm{A}} \\
f\left(K_{2}^{\mathrm{A}}\right) \equiv & \sqrt{\left(m_{1} c^{2}\right)^{2}+(\hbar c)^{2}\left(\left(q_{\mathrm{B}}^{\mathrm{A}}\right)^{2}+\left(K_{2}^{\mathrm{A}}\right)^{2}-2 q_{\mathrm{B}}^{\mathrm{A}} K_{2}^{\mathrm{A}} \cos \theta_{2 q_{\mathrm{B}}}^{\mathrm{A}}\right)}+\sqrt{\left(m_{2} c^{2}\right)^{2}+\left(\hbar c K_{2}^{\mathrm{A}}\right)^{2}} \\
& +\sqrt{\left(m_{\mathrm{B}} c^{2}\right)^{2}+\left(\hbar c K_{\mathrm{B}}^{\mathrm{A}}\right)^{2}}-\sqrt{\left(m_{0} c^{2}\right)^{2}+\left(\hbar c K_{0}^{\mathrm{A}}\right)^{2}}-m_{\mathrm{A}} c^{2}
\end{aligned}
$$

Calculation of the PV (Con't)

\checkmark One can perform the integration over K_{2}^{A} by using:

$$
\begin{gathered}
\delta\left(f\left(K_{2}^{\mathrm{A}}\right)\right)=\sum_{i}\left|\frac{\partial f}{\partial K_{2}^{\mathrm{A}}}\right|_{\left(K_{2}^{\mathrm{A}}\right)_{i}}^{-1} \delta\left(K_{2}^{\mathrm{A}}-\left(K_{2}^{\mathrm{A}}\right)_{i}\right), \quad f\left(\left(K_{2}^{\mathrm{A}}\right)_{i}\right)=0 \\
\frac{\partial\left(E_{\text {tot }}^{\prime \mathrm{A}}-E_{\text {tot }}^{\mathrm{A}}\right)}{\partial K_{2}^{\mathrm{A}}}=\frac{\hbar^{2} c^{2}\left(K_{2}^{\mathrm{A}}-q_{\mathrm{B}}^{\mathrm{A}} \cos \theta_{2 q_{\mathrm{B}}}^{\mathrm{A}}\right)}{E_{1}^{\mathrm{A}}}+\frac{\hbar^{2} c^{2} K_{2}^{\mathrm{A}}}{E_{2}^{\mathrm{A}}}
\end{gathered}
$$

We implicitly assume that $\left(K_{2}^{\mathrm{A}}\right)_{i}$ satisfying the energy cons. is unique and is written as K_{2}^{A} for simplicity

$$
\begin{aligned}
\rho & =\left(K_{2}^{\mathrm{A}}\right)^{2}\left[\frac{\hbar^{2} c^{2}\left(K_{2}^{\mathrm{A}}-q_{\mathrm{B}}^{\mathrm{A}} \cos \theta_{2 q_{\mathrm{B}}}^{\mathrm{A}}\right)}{E_{1}^{\mathrm{A}}}+\frac{\hbar^{2} c^{2} K_{2}^{\mathrm{A}}}{E_{2}^{\mathrm{A}}}\right]^{-1} \begin{array}{l}
\frac{\text { Experimental condition }}{\boldsymbol{K}_{0}^{\mathrm{A}} \text { and masses of all particles }} \\
\text { Independent variables } \\
\boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}}\left(\text { thus } E_{\mathrm{B}}^{\mathrm{A}}\right), \Omega_{2}^{\mathrm{A}} \\
\underline{\text { Fixed quantities }} \\
\left.\boldsymbol{K}_{1}^{\mathrm{A}}\left(\text { thus } E_{1}^{\mathrm{A}}\right), K_{2}^{\mathrm{A}} \text { (thus } E_{2}^{\mathrm{A}}\right)
\end{array} \\
& =\frac{E_{2}^{\mathrm{A}} K_{2}^{\mathrm{A}}}{\hbar^{2} c^{2}}\left[1+\frac{E_{2}^{\mathrm{A}}}{E_{1}^{\mathrm{A}}}+\frac{E_{2}^{\mathrm{A}}}{E_{1}^{\mathrm{A}}} \frac{\left(\boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}}-\boldsymbol{K}_{0}^{\mathrm{A}}\right) \cdot \boldsymbol{K}_{2}^{\mathrm{A}}}{\left(K_{2}^{\mathrm{A}}\right)^{2}}\right]^{-1} \quad
\end{aligned}
$$

Calculation of MD in the A-rest frame

$$
\begin{array}{r}
\frac{d^{2} \sigma}{d \boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}} d \Omega_{2}^{\mathrm{A}}}=C_{0} \frac{E_{1} E_{2} E_{\mathrm{B}}}{E_{1}^{\mathrm{A}} E_{2}^{\mathrm{A}} E_{\mathrm{B}}^{\mathrm{A}}} \frac{E_{2}^{\mathrm{A}} K_{2}^{\mathrm{A}}\left[1+\frac{E_{2}^{\mathrm{A}}}{E_{1}^{\mathrm{A}}}+\frac{E_{2}^{\mathrm{A}}}{E_{1}^{\mathrm{A}}} \frac{\left(\boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}}-\boldsymbol{K}_{0}^{\mathrm{A}}\right) \cdot \boldsymbol{K}_{2}^{\mathrm{A}}}{\left(K_{2}^{\mathrm{A}}\right)^{2}}\right]^{-1}|T|^{2}}{\frac{d \sigma}{d \boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}}}=\int\left(\frac{d^{2} \sigma}{d \boldsymbol{K}_{\mathrm{B}}^{\mathrm{A}} d \Omega_{2}^{\mathrm{A}}}\right) d \Omega_{2}^{\mathrm{A}} \quad \text { Phase Volume }}
\end{array}
$$

Role of the PV

A-frame (A is at rest)

KO, K. Yoshida, K. Minomo, PRC 92, 034615 (2015).

PV effect on MD at 100 MeV (PWIA)

$\underline{0}_{3 / 2}$ proton MD in ${ }^{12} \mathrm{C}$

NOTE:
Energy dependence of the $N N t$-matrix is disregarded for a transparent interpretation (w/ IELM=0).

Phase Volume

PV effect on LG-MD at 100 MeV (PWIA)

\checkmark The PV effect gives a cut on the high-mom side.
\checkmark This effect becomes large at low energies and/or for deeply bound nucleons.

Attractive distortion effect

A-frame (A is at rest)

KO, K. Yoshida, K. Minomo, PRC 92, 034615 (2015).

Input for checking the attractive distortion effect

sample4.cnt

Incident energy is 100 MeV (/u)

Distorted waves are calculated with orbital ang. mom. L up to 30 .

A very simplified $N N$ cross section is used by setting IELM=0

Now you need a p ${ }^{12} \mathrm{C}$ potential at 100 MeV , which can be downloaded from the web.

Change these values if you want to control real and imaginary parts of optical potentials

Attractive distortion effect

HW: Draw the figures below. Note that the DWIA calculations on the MD with the current setting take time; on RCNP HPCI (miho), it takes roughly two hours.

MD of EB in the Glauber model

- Taking a Jacobi representation results in the simplest form of the PV.
- small $\omega-q$ is assumed, with neglecting the E-conservation.

$$
\begin{aligned}
& \quad \text { Integration over } \boldsymbol{K}_{\perp} \text { in the whole region } \\
& d_{\text {diff }} \vec{k}
\end{aligned}=\frac{1}{(2 \pi)^{3}} \frac{1}{2 L_{0}+1} \sum_{M_{0}} \int d^{2} \overrightarrow{R_{\perp}}\left|\int d^{3} \vec{r} \phi_{\vec{k}}^{*}(\vec{r}) S_{c} S_{n} \phi_{0, M_{0}}(\vec{r})\right|^{2} .
$$

- MD in the A-frame if the mom. of the $c-n \mathrm{c} . \mathrm{m}$. is 0 .

Application of DWIA to SEASTAR data analysis

DWIA analysis of RIBF/RCNP data

S. Kawase+, PTEP 2018, 021D01 (2018).

$\sigma_{p 2 p}=\frac{1}{2} \int\left(\frac{d^{3} \sigma}{d E_{1} d \Omega_{1} d \Omega_{2}}\right) d E_{1} d \Omega_{1} d \Omega_{2} \quad$ with $T>30 \mathrm{MeV}, 20$ deg. $<\theta<65$ deg., and $|\phi|<15$ deg.

A puzzle

$$
\sigma_{p 2 p}=\frac{1}{2} \int\left(\frac{d^{3} \sigma}{d E_{1} d \Omega_{1} d \Omega_{2}}\right) d E_{1} d \Omega_{1} d \Omega_{2}
$$

DWIA triple-differential cross sections (TDX), are integrated over E_{1}, Ω_{1}, and Ω_{2}, and compared with the GSI data.
V. Panin+, PLB 753, 204 (2016).

Pikoe for the GSI data

	DWIA	local	w/o Moller	local+w/o Moller	PLB757 (GSI)	PPNP96 (RCNP)	(e,e'p)
$3 / 2^{-}$g.s.	3.36	2.94	2.68	2.33	2.11	$1.82(3)$	$1.72(11)$
$1 / 2^{-} 2.13 \mathrm{MeV}$	0.34	0.31	0.27	0.25	0.26	$0.30(2)$	$0.26(2)$
$3 / 2^{-} 5.02 \mathrm{MeV}$	0.32	0.28	0.25	0.21	0.21	$0.23(3)$	$0.20(2)$

A puzzle

$$
\sigma_{p 2 p}=\frac{1}{2} \int\left(\frac{d^{3} \sigma}{d E_{1} d \Omega_{1} d \Omega_{2}}\right) d E_{1} d \Omega_{1} d \Omega_{2}
$$

DWIA triple-differential cross sections (TDX), are integrated over E_{1}, Ω_{1}, and Ω_{2}, and compared with the GSI data.
HW: Try to get these numbers.
V. Panin+, PLB 753, 204 (2016).

Pikoe for the GSI data

	DWIA	local	w/o Moller	local + w/o Moller	PLB757 (GSI)	PPNP96 (RCNP)	(e,e'p)
$3 / 2^{-}$g.s.	3.36	2.94	2.68	2.33	2.11	$1.82(3)$	$1.72(11)$
$1 / 2^{-} 2.13 \mathrm{MeV}$	0.34	0.31	0.27	0.25	0.26	$0.30(2)$	$0.26(2)$
$3 / 2^{-} 5.02 \mathrm{MeV}$	0.32	0.28	0.25	0.21	0.21	$0.23(3)$	$0.20(2)$

Plan of this talk (2/2)

4) Some theoretical achievements (for future)
K. Yoshida, M. Goméz-Ramos, KO, and A. M. Moro, PRC 97, 024608 (2018).

4-1. Microscopic optical potential
4-2. Benchmark study on ${ }^{15} \mathrm{C}(p, p n)$ with DWIA, TC, and Faddeev,-AGS.
5) Divergence of the TDX in inverse kinematics

5-1. Two-value feature of the kinematics and divergence of PV
5-2. When occurs?
6) Some recent/ongoing KO reaction studies around RCNP/RIBF
$6-1 .{ }^{2} n$ correlation study via ($p, p n$)
6-2. $\alpha \mathrm{KO}$ reactions
6-3. deuteron KO reactions
7) Summary

From phenomenology to microscopic theory

TABLE I. Optical-Model Parameters
Neutrons

NuClide	ENERGY (MEV) (MEV)	$\frac{\text { REAL }}{V}$	$\begin{aligned} & \text { POTENT } \\ & \text { R } \end{aligned}$	
AL	1.	40.	1.25*	0.65*
AL	1.5	47.4	1.25*	0.46
AL	2.47	48.0	1.14	0.65
AL	3.00	47.9	1.13	0.72
AL	3.49	48.7	1.18	0.61
AL	4.00	49.1	1.20	0.62
aL	4.56	50.2	1.13	0.59
AL	6.09	47.8	1.21	0.67
AL	7.	45.5	1.25*	0.65*
AL	7.05	49.1	1.20	0.68
AL	7.97	49.4	1.29	0.69

VOL.IMAG. POTENTIAL SURF.IMAG. POTENTIAL.

$5.0 \mathrm{G*}$	$1.25 *$	$0.98 *$
6.3 G	$1.25 *$	$0.98 *$
8.42	1.19	$0.48 *$
7.35	1.08	$0.48 *$
8.46	1.29	$0.48 *$
7.99	1.26	$0.48 *$
8.38	1.26	$0.48 *$
8.23	1.23	$0.48 *$
$9.5 G$	$1.25 *$	0.98^{*}
7.90	1.20	$0.48 *$
12.1	1.30	0.41

Multiple scattering theory (MST)

$$
\begin{array}{r}
\left(T_{\mathrm{NA}}+\sum_{i} v_{i}+H_{\mathrm{A}}-E\right) \Psi=0 \stackrel{\text { Resummation }}{ }{ }^{(\text {for all boundary conditions) }}\left(T_{\mathrm{NA}}+\sum_{i} \bar{t}_{i}+H_{\mathrm{A}}-E\right) \bar{\Psi}=0 \\
\quad \bar{t}_{i}=\frac{A-1}{A} t_{i}, \quad t_{i}=v_{i}+v_{i} G_{0}^{(+)} t_{i}
\end{array}
$$

L. L. Foldy, Phys. Rev. 67, 107 (1945); K. M. Watson, Phys. Rev. 89, 115 (1953).
A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys. (NY) 8, 551 (1959).

Extension to nucleus-nucleus scattering \longrightarrow M. Yahiro, K. Minomo, KO, and M. Kawai, PTP 120, 767 (2008).

The folding model potential based on the MST

An "expectation value" of a nucleon-nucleon $(N N)$ effective interaction

Microscopic description of nucleon-nucleus scattering

No free parameter ("prediction")
cf. K. Amos ${ }^{+}$, Adv. Nucl. Phys. 25, 275 (2000). T. Furumoto+, PRC 78, 044610 (2008). M. Toyokawa+, PRC 92, 024618 (2015).

Benchmark with Transfer to the Continuum model

K. Yoshida, M. Goméz-Ramos, KO, and A. M. Moro, PRC97, 024608 (2018).

\checkmark TC justifies the impulse approximation (use of $t_{N N}$, with choosing $N N$ kinematics according to the two asymptotic nucleon momenta and including the M ϕ ller factor)
\checkmark DWIA justifies fixing the optical potentials of outgoing nucleons at one energy.

DWIA vs. Faddeev-AGS

R. Crespo + , PRC77, 024601 (2008); PRC90, 044606 (2014).

FIG. 8. (Color online) ${ }^{11} \mathrm{~B}$ core transverse momentum distribution for the ${ }^{12} \mathrm{C}(p, 2 p){ }^{11} \mathrm{~B}$ reaction at $400 \mathrm{MeV} / \mathrm{u}$ The curves represent the observable calculated to second and third orders in the multiple scattering expansion using all the Faddeev-AGS terms and with a truncated series as in the DWIA reaction approach.

FIG. 15. (Color online) Cross section for the breakup ${ }^{11} \mathrm{Be}(\mathrm{p}, \mathrm{pn})$ at 100 MeV .

Plan of this talk (2/2)

4) Some theoretical achievements (for future)
K. Yoshida, M. Goméz-Ramos, KO, and A. M. Moro, PRC 97,024608 (2018).

4-1. Microscopic optical potential
4-2. Benchmark study on ${ }^{15} \mathrm{C}(p, p n)$ with DWIA, TC, and Faddeev,-AGS.
5) Divergence of the TDX in inverse kinematics
$K O+$, in preparation.
5-1. Two-value feature of the kinematics and divergence of PV
5-2. When occurs?
6) Some recent/ongoing KO reaction studies around RCNP/RIBF
$6-1 .{ }^{2} n$ correlation study via ($p, p n$)
6-2. $\alpha \mathrm{KO}$ reactions
$6-3$. deuteron KO reactions
7) Summary

${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p}){ }^{11} \mathrm{~B}_{\text {g.s. }}$ at $392 \mathrm{MeV} / \mathrm{u}$

L-frame

${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p}){ }^{11} \mathrm{~B}_{\text {g.s. }}$ at $392 \mathrm{MeV} / \mathrm{u}$ (PWIA)

Input for $T D X$ calc. of ${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p})$ in inv. kin.

sample5.cnt

output in the V -frame

When you investigate the correspondence between the forward and inverse kinematics, we recommend to use ICTREIN=1.

Usually it is better to use a smaller step size of θ in inverse kinematics.

The direction of the z-axis is inverted.

HW: You can directly control the kinetic variables in inverse kinematics measurement by putting IKIN=1, IFRM $=0$, and $\mathrm{IMIR}=0$. Reproduce the result in the lower panel on the previous slide in that way.

${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p}){ }^{11} \mathrm{~B}_{\text {g.s. }}$ at $392 \mathrm{MeV} / \mathrm{u}$

Plan of this talk (2/2)

4) Some theoretical achievements (for future)
K. Yoshida, M. Goméz-Ramos, KO, and A. M. Moro, PRC 97,024608 (2018).

4-1. Microscopic optical potential
4-2. Benchmark study on ${ }^{15} \mathrm{C}(p, p n)$ with DWIA, TC, and Faddeev,-AGS.
5) Divergence of the TDX in inverse kinematics
$\mathrm{KO}+$, in preparation.
5-1. Two-value feature of the kinematics and divergence of PV
5-2. When occurs?
6) Some recent/ongoing KO reaction studies around $\mathrm{RCNP} / \mathrm{RIBF}$
$6-1 .{ }^{2} n$ correlation study via ($p, p n$)
6-2. $\alpha \mathrm{KO}$ reactions
6-3. deuteron KO reactions
7) Summary

${ }^{6} \mathrm{He}(\mathrm{p}, \mathrm{pn})$

Proving ${ }^{2} \mathrm{n}$ in ${ }^{6} \mathrm{He}$ via (p, pn) (in inverse kinematics)

Y. Kikuchi, KO, Y. Kubota, M. Sasano, and T. Uesaka, PTEP 2016, 103D03 (2016).

($\mathrm{p}, \mathrm{p} \alpha$)

${ }^{20} \mathrm{Ne}(\mathrm{p}, \mathrm{p} \alpha)$ at 101.5 MeV

K. Yoshida, Y. Chiba, M. Kimura, Y. Taniguchi, Y. Kanada-En'yo, and KO, PRC 100, 044601 (2019).

Other systems:

${ }^{120} S n(p, p \alpha):$ K. Yoshida, K. Minomo, and KO, PRC 94, 044604 (2016).
${ }^{10}$ Be (p,pa): M. Lyu, K. Yoshida, Y. Kanada-En'yo, and KO, PRC 97, 044612 (2018).
${ }^{12}$ Be (p,pa): M. Lyu, K. Yoshida, Y. Kanada-En'yo, and KO, PRC 99, 064601 (2019).
(p,pd)

Experimental fact

C. Samanta+, RRC 26, 1379 (1982).

C. Samanta+, RRC 34, 1610 (1986).

Remarks on pn knockout

A pickup type of (p,pd) can also be considered (NP1912-SAMURAI53)

Pairing strength vs. TDX

Y. Chazono, K. Yoshida, K. Yoshida, and KO, arXiv:2007.06771

- The peak height of the TDX clearly reflects the pn pairing strength.
- The deuteron breakup is neglected.
- The elementary process is assumed to be the $p d$ elastic scattering.

Breakup effect of the emitted deuteron

Y. Chazono, K. Yoshida, and KO, in preparation.

- The deuteron breakup effect is very large.
- A naïve $p n$ single-particle wave function is adopted.
- The elementary process is assumed to be the $p d$ elastic scattering.

${ }^{4} n$ and ${ }^{7} H$

${ }^{4}$ n and ${ }^{7} \mathrm{H}$

Approved as an RCNP COREnet program with Hiyama-san (Kyushu U / RIKEN)

${ }^{8} \mathrm{He}(p, p \alpha):$ NP1406-SAMURAI 19

${ }^{8} \mathrm{He}(p, 2 p)$: NP1512-SAMURAI 34

Summary

1) $(p, p N)$ is a powerful tool for investigating proton/neutron s.p. structure of stable and unstable nuclei. Determination of the S-factor is, however, not so trivial even for stable nuclei via kinematically complete measurement in forward kinematics.
2) Momentum distribution (MD) is a key observable in inverse kinematics. Its shape is asymmetric in general because of the asymmetry in the kinematics. The phase volume and attractive distortion effects are responsible for the asymmetric MD.
3) The triple differential cross section (TDX) diverges in some kinematical conditions in inverse kinematics. It happens when the solution to the energy conservation is a double root. Although an integrated cross section becomes finite, the TDX is significantly enhanced around the divergence point, which is nothing to do with the s.p. structure of nuclei.
4) ${ }^{2} n$ correlation, α clustering, eff. polarization of residue, deuteron-like $p n$ pair (and $p n$ tensor correlation), ${ }^{4} n$, and ${ }^{7} \mathrm{H}$ are under investigation via knockout reactions.
