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Cancer

• About 14 million new cases of cancer are diagnosed every
year worldwide.

• Cancer is responsible for ∼8 million deaths every year
worldwide.

• The estimated cost of cancer is $1.16 trillion worldwide.

• Research is needed to help understand how cancer
develops and how to best treat different types of cancers.



Cancer Primer

• Cancer is a family of diseases, with
each type of cancer having its own
unique characteristics.

• Cancer is caused by a mutation that
leads to abnormal cell proliferation.

• The uncontrolled proliferation and lack
of cell death allows the abnormal cells
to infiltrate healthy orgrans.



Cancer Treatment

• Current standard treatments include
surgery, radiation, and chemotherapy.

• These treatments have serious and
sometimes debilitating side effects.

• New treatment modalities aim to reduce
side effects and include immunotherapy,
oncolytic viruses, and gene therapy.



Physics and Biology?

• Physicists build mathematical models to understand and
predict the behaviour of a system.

• Physicists find connections between vastly different
systems.

• Mathematical modeling of non-biological systems has led
to the modern, technology-based society.

• Application of these physics techniques can help us
understand biological systems.



Mathematical Modeling of Cancer

• Mathematical models can help us understand the
processes underlying cancer growth and treatment.

• Models can be used to help determine optimal doses and
treatment regimens.

• Models can be used to study and optimize combination
therapy.

• This talk will focus on ODE models and their use in
modeling tumor growth and treatment with oncolytic
viruses.



Modeling Tumor Growth

Several ODE models of tumor growth have been proposed and
are used to model tumor growth.

Exponential: V̇ = λV

Mendelsohn: V̇ = λV a

Logistic: V̇ = λV (1 − bV )

Linear: V̇ = aV
V+b

Surface: V̇ = aV

(V+b)
1
3

Gompertz: V̇ = aV ln
(

b
V+c

)
Von Bertalanffy: V̇ = aV

2
3 − bV



Choosing the Right Model

• There is little guidance on how to choose the best growth
model.

• Is there a model that best describes most types of cancer?

• Should growth models be different for in vivo vs. in vitro
studies?

• Do different types of cancer need different models?



Why Model Choice Matters
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Data from Worschech et al, BMC Genomics (2009)

We need to accurately predict growth in order to accurately
assess treatment efficacy.



Methods

• Search literature for experimental data of tumor growth.

• Fit models to data using least-square fitting.

• Use Akaike’s information criterion (AICC) to determine
which model best explains the data

AICC = n ln
(

SSR
n

)
+

2(K + 1)n
n − K − 2

,

n — number of data points
K — number of parameters
SSR — sum of squared residuals



Results

To date 204 data sets have been analyzed
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The exponential and generalized exponential are the most
frequent best fits.



Are the Data Sets Too Short?

It’s possible that the exponential models are the best models
because we are dealing with short data sets.
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Data sets best fit by exponential models are not of shorter
duration than the others.



Results by Strain
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Summary

• Exponential and generalized exponential models are most
frequent best fits.

• This does not appear to be because the data is not
collected over a long enough time span.

• There is not yet enough data to determine whether choice
of model should depend on type of cancer.



Oncolytic Virus Treatment

• Ability of certain viruses to destroy tumor cells and effect
cancer remission is well known, with reports dating back
more than 100 years

• Focus of significant research in 1950s, but by late 1960s
interest declined

• By the 1990s, improved biotechnology and the potential for
gene therapy led to renewed interest in oncolytic viruses

• A number of clinical trials are currently underway
• Oncolytic virus therapy currently approved and in use in

China and Latvia
• China - Oncorine (modified H101 adenovirus) for head and

neck cancer
• Latvia - RIGVIR (ECHO-7 enterovirus) for several types of

cancer



Viral Replication Cycle



Oncolytic Viruses

• Many viruses can kill tumor cells, but we would also like
them to NOT kill healthy cells.

• Many viruses have a natural preference for cancer cells,
although the mechanism varies:

• Viruses can more easily bind to receptors on cancer cells
than receptors on healthy cells.

• Viruses can replicate more efficiently in cancer cells than in
healthy cells.

• Viruses can kill cancer cells more effectively than healthy
cells.

• Viruses can stimulate the immune response to attack
cancer cells due to a lack of IFN response in tumors.



Replication Selective Virotherapy

Assumes no virus replication in normal cells

Reproduced from Kirn D et al. (Nat. Med., 2001)



Reality

Modified from Aguilar-Cordova, E. (Nat. Biotech., 2003)

In reality, we cannot completely prevent viruses from replicating
in normal cells.



Two Cell Model

Uninfected cancer

Uninfected normal

Infected cancer

Logistic growth

Logistic growth

Infected normal

• Previous OV models have typically focused on effects upon
cancer cells and tumor size reduction.

• Do not address potential infection of surrounding normal
cells and resulting changes in virus population.



Model Equations
dUc

dt
= λUc

(
1 − Uc + Ic

K

)
− βUcV

dIc
dt

= βUcV − δIc

dUn

dt
= rλλUn

(
1 − Un + In

rK K

)
− rββUnV

dIn
dt

= rββUnV − rδδIn

dV
dt

= p(rpIn + Ic)− cV

• There is no explicit immune response.
• We are currently using logistic growth for both cancer and

healthy cells.
• ODEs assume that cancer and healthy cells are

well-mixed, i.e. no spatial structure.



No Cell Tropism

Are differences in cell growth enough to eradicate the tumor?
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• The tumor will be eradicated and healthy cells preserved if
rλ > 1. Unfortunately tumors typically grow faster than
healthy cells.

• Changes in rK do not lead to cure.



Possible Outcomes

We have the following possible steady states:
Uc = Ic = Un = In = V = 0
Uc = Ic = In = V = 0,Un = rK K
Ic = Un = In = V = 0,Uc = K
Ic = In = V = 0,Uc = K ,Un = rK K

where the steady states correspond to
• Everything dies.
• The cancer is cured.
• Healthy cells die, but the tumor remains.
• Both healthy cells and tumor are unaffected by virus.



Goals

• We want to find parameter ranges corresponding to the
second steady state (cancer is cured).

• We examine the different mechanisms of viral preference
to see if a particular mechanism is preferable.

• We varied rp, rδ, rβ along with rλ to find which parameter
values eradicate cancer cells but still preserve normal cells.



Difference in Viral Production
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• Differences in viral production will not lead to a cure.
• Either both cell populations remain or both cell populations

die.



Difference in Viral Kill Rate
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• Differences in viral kill rate do not lead to a cure.
• Again either both cell populations survive or both die.



Difference in Viral Infection Rate
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• At low values of rβ, we see a small controlled tumor with no
healthy cell damage.

• For a range of values near 10−2, the tumor disappears, but
healthy cells remain.



Conclusions

• Our model suggests that only viruses that preferentially
infect cancer cells will be able to cure the cancer.

• Differences in production rate or kill rate alone will not be
able to eradicate the tumor.

• There is a small range of infection rates that will lead to
eradication of the tumor.

• Large differences in infection rate lead to a controlled
tumor.



Future Work

• Determine guidelines for choosing ODE tumor growth
models.

• Investigate how growth model choice affects oncolytic virus
treatment predictions.

• Develop a model that includes spatial effects to see if
tumor structure can help limit spread of virus to
neighboring cells.

• Incorporate immune response to study the last mechanism
of cell preference.
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